Math, asked by shubhmishra0008, 11 months ago

Rita has bought a carpet of size 4m X 6 2/3 m. But her room size is 3 1/3
m X 5 1/3 m. What fraction of area should be cut off to fit wall - wall
carpet into the room?​

Answers

Answered by mysticd
49

 \underline { \blue { Dimensions \:of \:a \: carpet }}

 Length (L) = 4\:m , \\Breadth (B) = 6\frac{2}{3} \:m \\= \frac{20}{3} \:m

 \underline { \blue { Dimensions \:of \:a \: Room }}

 Length (l) = 3 \frac{1}{3}\:m\\= \frac{10}{3} \:m  , \\Breadth (b) = 5\frac{1}{3} \:m \\= \frac{16}{3} \:m

 \red{ Fraction \:of \:Area \: should \:be \:cut}\\\red{off \:to \:fit \: wall } \\=Area \:of \:the \: carpet - Area\:of \:the \:room \\= L \times B - l \times b \\= 4 \times \frac{20}{3} \:m - \frac{10}{3} \:m \times \frac{16}{3} \:m \\= \frac{80}{3} \:m^{2} - \frac{160}{9} \:m^{2}\\= \frac{240 - 160}{9} \\= \frac{80}{9}\\=8 \frac{8}{9} \:m^{2}

Therefore.,

 \red{ Area \: of \: carpet \: cut \:off } \green {=8 \frac{8}{9} \:m^{2}}

•••♪

Answered by sagunyadav6789
12

Answer:

answer is 8 hole 8/9 your answer

Similar questions