Math, asked by rekhadixit2387, 9 months ago

Rita types 2070 words in 3/2
h. How long will she take to type 3450 words? How many words will she type in 3 hours?

Answers

Answered by amankumaraman11
39

Given,

  • Words typed in 3/2 hrs = 2070

¤ To find :-

  • Time taken to type 3450 words
  • Words typed in 3 hours

Here,

Words typed in 3/2 hrs = 2070

 \to  \text{Words typed in 1 hrs = } \frac{2070}{ \frac{3}{2} }   \\   \:  \:  \:  \:  \:  \:  \: \implies \frac{2070 \times 2}{3}  \\ \:  \:  \:  \:  \:  \:  \: \implies 690 \times 2 \:  \:   \to \green{1380}

  • 1380 word are typed in 1 hour.

\text{Time taken to type 2070 words = } \bf \frac{3}{2}  \: hrs \\  \\  \therefore \:  \text{Time taken to type 1 word = } \frac{ \frac{3}{2} }{2070}  \\   \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \implies  \:  \:  \:  \:  \frac{3}{2 \times 2070} = \frac{ \cancel3}{2 \times  \cancel3 \times 690}   \\ \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \implies \:  \:  \:  \:     \frac{1}{2 \times 690}  =  \bf \frac{1}{1380}   \: \: hrs

Now,

\boxed{ \small\bullet  \:  \:  \text{Time taken to type 3450 words} =  \pink{3450 \times  \text{Time taken to type 1 word}} }\\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \implies3450 \times  \frac{1}{1380}  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \implies \frac{345 \cancel0}{138 \cancel0}    \:  \: \to \bf  \red{2.5} \: hrs

And,

\boxed{ \small\bullet \:  \:  \text{Words typed in 3 hours} =  \pink{3 \times \text{Words are typed in 1 hour}}} \\  \bf  \:  \:  \:  \:  \:  \:  \: \implies3 \times 1380 \\  \bf \:  \:  \:  \:  \:  \:  \: \implies \red{4140}

Hence,

  • 2.5 hours are taken for typing 3450 words.
  • 4140 words are typed in 3 hours.
Answered by leena89793
2

Step-by-step explanation:

Given,

Words typed in 3/2 hrs = 2070

¤ To find :-

Time taken to type 3450 words

Words typed in 3 hours

Here,

Words typed in 3/2 hrs = 2070

\begin{gathered} \to \text{Words typed in 1 hrs = } \frac{2070}{ \frac{3}{2} } \\ \: \: \: \: \: \: \: \implies \frac{2070 \times 2}{3} \\ \: \: \: \: \: \: \: \implies 690 \times 2 \: \: \to \green{1380}\end{gathered}→Words typed in 1 hrs = 232070⟹32070×2⟹690×2→1380

1380 word are typed in 1 hour.

\begin{gathered}\text{Time taken to type 2070 words = } \bf \frac{3}{2} \: hrs \\ \\ \therefore \: \text{Time taken to type 1 word = } \frac{ \frac{3}{2} }{2070} \\ \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \implies \: \: \: \: \frac{3}{2 \times 2070} = \frac{ \cancel3}{2 \times \cancel3 \times 690} \\ \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \implies \: \: \: \: \frac{1}{2 \times 690} = \bf \frac{1}{1380} \: \: hrs\end{gathered}Time taken to type 2070 words = 23hrs∴Time taken to type 1 word = 207023⟹2×20703=2×3×6903⟹2×6901=13801hrs

Now,

\begin{gathered}\boxed{ \small\bullet \: \: \text{Time taken to type 3450 words} = \pink{3450 \times \text{Time taken to type 1 word}} }\\ \: \: \: \: \: \: \: \: \: \: \implies3450 \times \frac{1}{1380} \\ \: \: \: \: \: \: \: \: \: \: \implies \frac{345 \cancel0}{138 \cancel0} \: \: \to \bf \red{2.5} \: hrs\end{gathered}∙Time taken to type 3450 words=3450×Time taken to type 1 word⟹3450×13801⟹13803450→2.5hrs

And,

\begin{gathered}\boxed{ \small\bullet \: \: \text{Words typed in 3 hours} = \pink{3 \times \text{Words are typed in 1 hour}}} \\ \bf \: \: \: \: \: \: \: \implies3 \times 1380 \\ \bf \: \: \: \: \: \: \: \implies \red{4140}\end{gathered}∙Words typed in 3 hours=3×Words are typed in 1 hour⟹3×1380⟹4140

Hence,

2.5 hours are taken for typing 3450 words.

4140 words are typed in 3 hours

Similar questions