RNH4Cl -> RNH2 + H2Cl is this correct?
Answers
Explanation:
GIVEN :-
Two force P and Q .
Maximum resultant = 300.
Minimum resultant = 800 N.
TO FIND :-
The value of P and Q.
SOLUTION :-
The maximum resultant force can be written as,
\begin{gathered} \implies \sf \: P + Q = 300....(1) \\ \end{gathered}
⟹P+Q=300....(1)
The minimum resultant force can be written as,
\begin{gathered}\implies \sf \: P - Q = 800....(2) \\ \end{gathered}
⟹P−Q=800....(2)
From equation 1 we have,
\begin{gathered}\implies \sf \: P = 300 - Q ....(3) \\ \end{gathered}
⟹P=300−Q....(3)
From equation 2 we have,
\begin{gathered}\implies \sf \: P = 800 + Q ....(4) \\ \end{gathered}
⟹P=800+Q....(4)
On comparing equation 3 and 4 we get,
\begin{gathered}\implies \sf \: 300 - Q = 800 + Q \\ \end{gathered}
⟹300−Q=800+Q
\begin{gathered}\implies \sf \: - 2Q = 500 \\ \end{gathered}
⟹−2Q=500
\begin{gathered}\implies \sf \: - Q = \dfrac{500}{2} \\ \end{gathered}
⟹−Q=
2
500
\begin{gathered}\implies \sf \: Q = - 250 \\ \end{gathered}
⟹Q=−250
Now substitute the value of Q in equation 1,
\begin{gathered}\implies \sf \: P - 250 = 300 \\ \end{gathered}
⟹P−250=300
\begin{gathered}\implies \sf \: P= 300 + 250 \\ \end{gathered}
⟹P=300+250
\implies \sf \: P=550⟹P=550
Hence the value of P is 550 and value of Q is -250.