Math, asked by ankulraj660, 8 months ago

Rohan constructed a paper windmill using 4
triangles. For AGOH the sides are in the ratio 25 :
17:12 and for ACOD, the sides are 13 cm, 84 cm
and 85 cm. For AAOB, he took all sides of equal
length.

Attachments:

Answers

Answered by vasanthaallangi40
16

\mathbb\pink{AREA~~OF~~∆GOH~=~9000mm²}

\large\bold{Given:}

∆GOH's side's ration = 25 : 17 : 12

Perimeter = 540mm

\large\bold{To~Find:}

Area of the Triangle ( GOH )

\large\bold{Formulas:}

\red{\longrightarrow}Perimeter of a Triangle

side1 + side2 + side3 = Perimeter

\red{\longrightarrow}Heron's Formula

{Area \: of \: a \: trianle \:  =  \:  \sqrt{(s)(s - a)(s - b)(s - c)} }

\large\bold{Calculation:}

Let's assume the triangle's sides as \pink{25x,~17x,~12x}

Then, the perimeter = 25x + 17x + 12x = \pink{54x}

According to question :

54x = 540

x = 540 ÷ 54 = 10

\boxed{\rm{∴~x~=~10}}

25x = 25 × 10 = \pink{250mm}

17x = 17 × 10 = \pink{170mm}

12x = 12 × 10 = \pink{12mm}

\mathrm{We're~having~the~required~values~to~find~Area}

\large\underline\mathrm\purple{Heron's~Formula }

Area \: of \: a \: trianle \:  =  \:  \sqrt{(s)(s - a)(s - b)(s - c)}

s = semiperimeter

a = side 1

b = side 2

c = side 3

\large\underline\mathrm\purple{Let's~find~the~Area}

s = 540 ÷ 2 = 270

a = 250

b = 170

c = 120

 =  \sqrt{(270)(270 - 250)(270 - 170)(270 - 120) \: }  \\  \\   = \sqrt{270 \times 20 \times 100 \times 150 \: }  \\  \\  = \sqrt{10 \times 3 \times 3 \times 3 \times 10 \times 2 \times 10 \times 2 \times 5 \times 10 \times 3 \times 5}  \\  \\  =  \: 10 \times 10 \times 2 \times 3 \times 3 \times 5 \\  \\  =  \: 9000

\large\bold{Solution:}

\boxed{\mathrm{\red{Area~of~∆GOH~=~9000mm²}}}

Answered by Anonymous
1

\mathbb\pink{AREA~~OF~~∆GOH~=~9000mm²}

\large\bold{Given:}

∆GOH's side's ration = 25 : 17 : 12

Perimeter = 540mm

\large\bold{To~Find:}

Area of the Triangle ( GOH )

\large\bold{Formulas:}

\red{\longrightarrow}Perimeter of a Triangle

⇒ side1 + side2 + side3 = Perimeter

\red{\longrightarrow}Heron's Formula

{Area \: of \: a \: trianle \:  =  \:  \sqrt{(s)(s - a)(s - b)(s - c)} }

\large\bold{Calculation:}

Let's assume the triangle's sides as \pink{25x,~17x,~12x}

Then, the perimeter = 25x + 17x + 12x = \pink{54x}

According to question :

54x = 540

x = 540 ÷ 54 = 10

\boxed{\rm{∴~x~=~10}}

25x = 25 × 10 = \pink{250mm}

17x = 17 × 10 = \pink{170mm}

12x = 12 × 10 = \pink{12mm}

\mathrm{We're~having~the~required~values~to~find~Area}

\large\underline\mathrm\purple{Heron's~Formula }

Area \: of \: a \: trianle \:  =  \:  \sqrt{(s)(s - a)(s - b)(s - c)}

s = semiperimeter

a = side 1

b = side 2

c = side 3

\large\underline\mathrm\purple{Let's~find~the~Area}

s = 540 ÷ 2 = 270

a = 250

b = 170

c = 120

 =  \sqrt{(270)(270 - 250)(270 - 170)(270 - 120) \: }  \\  \\   = \sqrt{270 \times 20 \times 100 \times 150 \: }  \\  \\  = \sqrt{10 \times 3 \times 3 \times 3 \times 10 \times 2 \times 10 \times 2 \times 5 \times 10 \times 3 \times 5}  \\  \\  =  \: 10 \times 10 \times 2 \times 3 \times 3 \times 5 \\  \\  =  \: 9000

\large\bold{Solution:}

\boxed{\mathrm{\red{Area~of~∆GOH~=~9000mm²}}}

Similar questions