Math, asked by srishtipoddarrnc, 13 days ago

Rohit goes to his school by car at 60 km per hour and Manoj goes to the same school by scooty at 40 km per hour. If they both live in the same locality, find the ratio between the time taken by Rohit and Manoj to reach their school. ​

Answers

Answered by yashasb05
4

Answer:

Rohit travel by car, speed of the car = 60 km/hr

Manoj travel by scooty, speed of the scooty = 40 km/hr

Since, it is given that they live in the same locality

Hence, let the distance be k time take by Rohit to reach school = \frac{Dis\tan ce}{Speed}=\frac{K}{60}SpeedDistance=60K

Time taken by Manoj to reach school = \frac{K}{40}40K

The ratio between the time taken by

Rohit and Manoj to reach school

=\frac{K}{60}:\frac{K}{40}=\frac{1}{3}:\frac{1}{2}=2:3=60K:40K=31:21=2:3

Answered by Anonymous
20

\boxed{  \underline{ \underline{ \dashrightarrow  \footnotesize\tt{  Given:-}}}}  \:  \purple\bigstar

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \footnotesize \tt{Speed  \: of \:  Rohit \:  car = 60km \:  per \:  hour}

 \footnotesize \tt{Speed  \: of \:  Manoj  \: car = 40 km  \: per  \: hour}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\boxed{  \underline{ \underline{ \dashrightarrow  \footnotesize\tt{  Let :  - }}}}  \:  \purple\bigstar

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \footnotesize \tt{Let \:  distance \:  be  \: x }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\boxed{  \underline{ \underline{ \dashrightarrow  \footnotesize\tt{  Solution:- }}}}  \:  \purple\bigstar

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \footnotesize \tt{Time \:  taken \:  by \:  Rohit \:  car}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \footnotesize \tt{ Time= \frac{Distance}{Speed}}

 \footnotesize \tt{Time = \: } \tt{ \frac{x}{60}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \footnotesize \tt{Time \:  taken \:  by \:  Manoj \:  car}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \footnotesize \tt{ Time= \frac{Distance}{Speed}}

 \footnotesize \tt{Time = \: } \tt{ \frac{x}{40}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \footnotesize \tt{Now, \:  calculate  \: the \:  ratio \:  between  \: the \:  time \: taken  \: by Rohit  \: and  \: Manoj}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

  \dashrightarrow\tt{ \frac{x}{60} \div  \frac{x}{40}}

  \dashrightarrow \tt{ \frac{x}{60}  \times  \frac{40}{x}}

  \dashrightarrow \tt{  \cancel\frac{ x}{60}  \times  \cancel\frac{  40}{x}}

  \dashrightarrow \tt{ \frac{2}{3}}

\boxed{  \underline{ \underline{ \dashrightarrow  \footnotesize\tt{ 2 : 3}}}}  \:  \purple\bigstar

Similar questions