role of biochemists in Lovid19
Answers
The Emili laboratory is using systems biology and quantitative mass spectrometry-based approaches to study how the virus hijacks the host cellular protein machinery via a network of viral protein interactions with human cell surface receptors as well as intracellular signaling, metabolic and biomolecular replicative pathways, and so find actionable targets to boost adaptive cell- and tissue-level host responses in human and animal models. The are also using chemical proteomics to characterize potential anti-viral ligands and study the mechanism-of-action of all bioactive compound leads or ‘hits’ emerging from ongoing screens by our collaborators at the NEIDL to enhance their translational impact.
The Saeed laboratory is screening a library of protease inhibitors originally developed against other viruses to test their ability to inhibit SARS-CoV-2. They are taking several molecular virology approaches to understand which lung cells are preferentially targeted by the virus and what molecular mechanisms underlie the disease pathogenesis.
The Lau lab is also collaborating with the Saeed lab to build new human cell lines with fluorescent reporter genes to be inserted into the endogenous locus of several Interferon Stimulated Genes (ISGs). These ISGs are critical response genes triggered by cells responding to an acute viral infection and interferon signaling, but a proper subsequent biological response is for cells to turn back down the expression of ISGs after the first reaction to the virus. When cells or human patients are unable to turn off activated ISGs, this severe “cytokine storm” effect can be seen in certain severe cases of COVID19. With the engineered human cell lines with tagged ISGs available, they will perform real time monitoring of the cellular response during a lab-controlled COVID19 infection.