Math, asked by yogesh100779, 9 months ago

root 1- sec theta/1+ sin theta= sec theta- tan theta​

Attachments:

Answers

Answered by MaIeficent
40

Step-by-step explanation:

Correct Question:-

  • \rm \: Prove \: that  : \sqrt{ \dfrac{1 -  \sin\theta }{1 +  \sin\theta} }  =  \sec\theta   -  \tan\theta

\bf{\underline{\underline\red{To\:Prove}}}

  •  \sqrt{ \dfrac{1 -  \sin\theta }{1 +  \sin\theta} }  =  \sec\theta   -  \tan\theta

\bf{\underline{\underline\green{Proof:-}}}

Let us prove by simplifying LHS and RHS seperately

\rm  LHS = \sqrt{ \dfrac{1 -  \sin\theta }{1 +  \sin\theta} }

By rationalising:-

\rm = \sqrt{ \dfrac{1 -  \sin\theta }{1 +  \sin\theta} \times  \dfrac{1 -  \sin\theta}{1 -  \sin\theta}  }

\rm = \sqrt{ \dfrac{(1 -  \sin\theta) (1 -  \sin\theta)}{(1 +  \sin\theta)(1 -  \sin\theta)}   }

\rm = \sqrt{ \dfrac{(1 -  \sin\theta)^{2} }{ {(1)}^{2}  -  {(sin \theta)}^{2} }  }

\rm = \sqrt{ \dfrac{(1 -  \sin\theta)^{2} }{ 1 -  {sin ^{2}  \theta}}  }

\rm = \sqrt{ \dfrac{(1 -  \sin\theta)^{2} }{  cos ^{2} \theta}  }  \:  \:  \:  \: \:  \:  \:  \:   \bigg( \because1 -  {sin}^{2}   \theta =  {cos}^{2} \theta \bigg)

\rm = \dfrac{ \sqrt{ {(1 - sin \theta) }^{2} } }{ \sqrt{ {cos}^{2} \theta } }

\rm =  \dfrac{1 -  {sin} \theta }{cos \theta}

\rm =  \dfrac{1}{cos \theta}  - \dfrac{sin \theta}{cos \theta} \:\:\: \:\: \: \bigg(\because\dfrac{1}{cos\theta} = sec\theta\: , \: \dfrac{sin\theta}{cos\theta} = tan\theta\bigg)

\rm =  sec \theta  -  tan \theta = RHS

LHS = RHS

Hence Proved

Answered by Anonymous
24

Explanation :-

Given :-

( Here, Theta = A)

  • √1-SinA/1 + SinA = SecA - TanA

Solution :-

=> LHS :-

=> √1 - SinA / 1 + SinA

Rationalize it,

=> √1 - SinA / 1 + SinA × 1 - SinA / 1 - SinA

=> √(1 - SinA).(1 - SinA) / ( 1 + SinA). (1 - SinA)

=> √(1 - SinA)² / (1)² - (SinA)²

=> √(1 - SinA)² / Cos²A

=> 1 - SinA / CosA

=> 1/CosA - SinA/CosA

=> SecA - TanA

=> RHS.

Formulae Used :-

  • Sin²A + Cos²A = 1
Similar questions