root 1- sec theta/1+ sin theta= sec theta- tan theta
Attachments:
Answers
Answered by
40
Step-by-step explanation:
Correct Question:-
Let us prove by simplifying LHS and RHS seperately
By rationalising:-
LHS = RHS
Hence Proved
Answered by
24
✔ Explanation :-
✔ Given :-
( Here, Theta = A)
- √1-SinA/1 + SinA = SecA - TanA
✔ Solution :-
=> LHS :-
=> √1 - SinA / 1 + SinA
Rationalize it,
=> √1 - SinA / 1 + SinA × 1 - SinA / 1 - SinA
=> √(1 - SinA).(1 - SinA) / ( 1 + SinA). (1 - SinA)
=> √(1 - SinA)² / (1)² - (SinA)²
=> √(1 - SinA)² / Cos²A
=> 1 - SinA / CosA
=> 1/CosA - SinA/CosA
=> SecA - TanA
=> RHS.
✔ Formulae Used :-
- Sin²A + Cos²A = 1
Similar questions