India Languages, asked by chandraamani1979, 9 months ago

root 1+sin tita /1-sin teta + root 1-sin teta 1+ sin teta​

Attachments:

Answers

Answered by VishnuPriya2801
9

Answer:-

To Prove:

 \sf \implies \large{  \sqrt{ \frac{1 +  \sin \theta}{1 -  \sin \theta} }  +  \sqrt{ \frac{ 1 -   \sin \theta}{1 +  \sin \theta} }  = 2 \:  \sec \theta}

On squaring both sides we get,

 \sf \implies \:  \bigg( { \sqrt{ \frac{1 +  \sin \theta }{1 -  \sin \theta}  }  +  \sqrt{ \frac{1 -  \sin \theta }{1 +  \sin \theta } }  \bigg)}^{2}    =  {(2 \:  \sec \theta) }^{2}  \\  \\

Using the formula (a + b)² = a² + b² + 2ab in LHS we get,

 \sf \implies \:  { \bigg( \sqrt{ \frac{1 +  \sin \theta }{1 -  \sin \theta} }  \bigg)}^{2}  +  {  \bigg(  \sqrt{ \frac{1 -  \sin \theta }{1 +  \sin \theta} } \bigg) } ^{2}  + 2 \times  \sqrt{ \frac{1 +  \sin \theta}{1 -  \sin \theta }  \times  \frac{1 -  \sin \theta }{1 +  \sin \theta } }  = 4 \:  { \sec}^{2}  \theta \\  \\  \sf \implies \:  \frac{1 +  \sin \theta }{1 -  \sin \theta }  +  \frac{1 -  \sin \theta }{1 +  \sin \theta }  + 2 = 4 \:  { \sec}^{2}  \theta \\  \\  \sf \implies \:  \frac{{(1 +  \sin \theta)} ^{2}  + ( {1 -  \sin \theta)}^{2}  }{(1 +  \sin \theta )(1 -  \sin \theta  }  = 4 \:  { \sec }^{2}  \theta - 2 \\  \\

Using the formulae

  • (a + b)(a - b) = a² - b²

  • (a - b)² = a² + b² - 2ab

in LHS we get,

 \sf \implies \:  \frac{1 +  { \sin }^{2}  \theta + 2 \sin \theta + 1 +  { \sin}^{2}  \theta - 2 \sin \theta}{ {1}^{2} -  { \sin}^{2}   \theta}  = 2(2 \:  { \sec }^{2}  \theta \:  - 1) \\  \\  \sf \implies \:  \frac{2 (1 +  { \sin }^{2} \theta) }{1 -  { \sin }^{2} \theta }  =2(2 \: { \sec } ^{2} \theta  - 1)\\\\

Using the identity cos² A = 1 - sin² A in LHS we get,

 \sf \frac{1   }{ { \cos}^{2} \theta }  +  \frac{ { \sin }^{2} \theta }{ {\cos} ^{2} \theta }  = 2 \:  { \sec }^{2}  \theta - 1 \\  \\

Using the identies sin² A/cos² A = tan² A and 1/cos² A = sec² A in LHS we get,

 \sf \implies \:  { \sec}^{2}  \theta +  { \tan }^{2}  \theta = 2 \:  { \sec }^{2}  \theta - 1\\\\

We know that,

sec² A - tan² A = 1

sec² A - 1 = tan² A

Hence,

 \sf \implies \:  { \sec }^{2}  \theta +  { \sec }^{2}  \theta - 1 = 2 { \sec }^{2}  \theta - 1 \\  \\  \sf \implies \: 2 { \sec }^{2}  \theta - 1 = 2 { \sec }^{2}  \theta - 1 \\  \\  \sf \large{LHS \:  = RHS}

Hence, Proved.

Similar questions