Math, asked by raghwendra8360, 9 months ago

Root 1-tansquare45degree/1+tan square 45degree

Answers

Answered by vaibhav7034
1

Answer:

hey mate it is your answer is 0.

Attachments:
Answered by ITzBrainlyGuy
4

QUESTION :

√1-tan²45°/1 + tan²45°

ANSWER:

We know that

sec²θ - tan²θ = 1

sec²θ = 1 + tan²θ

tan²θ = sec²θ - 1

Substituting the value of tan²θ & 1 + tan²θ = sec²θ

{ \bf{ \sqrt{ \frac{1 -  \frac{ {sin}^{2}  \theta}{ {cos}^{2} \theta } }{1  +  \frac{ {sin}^{2} \theta }{ {cos}^{2}  \theta} } } =  \sqrt{ \frac{ \frac{ {cos}^{2} \theta -  {sin}^{2} \theta  }{ {cos}^{2}  \theta} }{ \frac{ {cos}^{2} \theta +  {sin}^{2}  \theta }{ {cos}^{2}  \theta} } }  }}

We know that

sin²θ + cos²θ = 1

 { \bf{ \sqrt{ \frac{ {cos}^{2}    \theta - {sin}^{2} \theta  }{1} }  =  \sqrt{ { cos}^{2} \theta -  {sin}^{2} \theta  } }}

We know that

cos²θ - sin²θ = cos2θ

{ \bf{ \sqrt{ \frac{1 -  { tan }^{2}  \theta}{1 +  {tan}^{2}  \theta} } =  \sqrt{cos2 \theta}}}

Given that

θ = 45°

√cos2(45°

√cos90°

√0 = 0

Similar questions