Math, asked by bela0najvipinkle, 1 year ago

root 11- root 7 by root 11+ root 7 = a-b root 77 determine the rational numbers a and b

Answers

Answered by mysticd
230

Answer:

a=\frac{9}{2},\:b=\frac{1}{2}

Step-by-step explanation:

LHS=\frac{\sqrt{11}-\sqrt{7}}{\sqrt{11}+\sqrt{7}}

/* Rationalising the denominator, we get

=\frac{(\sqrt{11}-\sqrt{7})(\sqrt{11}-\sqrt{7})}{(\sqrt{11}+\sqrt{7})(\sqrt{11}-\sqrt{7})}

=\frac{(\sqrt{11}-\sqrt{7})^{2}}{(\sqrt{11})^{2}-(\sqrt{7})^{2}}

=\frac{11+7-2\times \sqrt{11}\times \sqrt{7}}{11-7}

/* By algebraic identities:

i) (a-b)² = +-2ab

ii) (a+b)(a-b) = - */

= \frac{18-2\sqrt{77}}{4}

=\frac{2(9-\sqrt{77})}{4}

=\frac{9-\sqrt{77}}{2}

=\frac{9}{2}-\frac{\sqrt{77}}{2}\\=RHS

Therefore,

\frac{9}{2}-\frac{\sqrt{77}}{2}\\=a-b\sqrt{77}

/* Compare both sides, we get

a=\frac{9}{2},\:b=\frac{1}{2}

•••♪

Answered by babydoll2904
69

Please mark me as brainlist..............

Attachments:
Similar questions