Math, asked by vedantk50, 1 month ago

Root 11 - root 7 / root 11 + root 7 = a - b root 77
Pls answer fast

Answers

Answered by Yugant1913
43

\huge\sf\mathbb\color{black} \underline{\colorbox{white}{☯SoLuTiOn☯}}

Step-by-step explanation:

 \frac{ \sqrt{11} +  \sqrt{7}  }{ \sqrt{11} -  \sqrt{7}  }  = a - b \sqrt{77 }  \\

 \frac{ (\sqrt{11}  +  \sqrt{7} {)}^{2}  }{( { \sqrt{11} )}^{2}   -  {( \sqrt{7}) }^{2} }  = a - b \sqrt{77}  \\

 \frac{11 +  7 + 2 \sqrt{77}  }{11 - 7}  = a - b \sqrt{77}  \\

 \frac{18 + 2 \sqrt{77} }{4}  = a - b \sqrt{77}  \\

 \frac{9 +  \sqrt{77} }{2}  = a - b \sqrt{77}  \\

 \frac{9}{2}  +  \frac{ \sqrt{77} }{2}  = a - b \sqrt{77}  \\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: compare \:  \: both \:  \: sides

a \:  =  \frac{9}{2}  \\

b \:  =  \frac{ - 1}{2}  \\

Answered by MrImpeccable
41

ANSWER:

Given:

\:\:\:\:\bullet\:\:\:\:\dfrac{\sqrt{11}-\sqrt7}{\sqrt{11}+\sqrt7}=a-b\sqrt{77}

To Find:

  • Value of a and b.

Solution:

\text{We are given that,}\\\\:\longrightarrow\dfrac{\sqrt{11}-\sqrt7}{\sqrt{11}+\sqrt7}=a-b\sqrt{77}\\\\\text{Simplifying LHS,}\\\\:\implies\dfrac{\sqrt{11}-\sqrt7}{\sqrt{11}+\sqrt7}\\\\\text{On rationalizing the denominator,}\\\\:\implies\dfrac{\sqrt{11}-\sqrt7}{\sqrt{11}+\sqrt7}\times\dfrac{\sqrt{11}-\sqrt7}{\sqrt{11}-\sqrt7}\\\\:\implies\dfrac{(\sqrt{11}-\sqrt7)\times(\sqrt{11}-\sqrt7)}{(\sqrt{11}+\sqrt7)\times(\sqrt{11}-\sqrt7)}\\\\\text{We know that,}\\\\:\hookrightarrow(x+y)(x-y)=x^2-y^2\\\\\text{So,}\\\\:\implies\dfrac{(\sqrt{11}-\sqrt7)^2}{(\sqrt{11})^2-(\sqrt7)^2}

\text{We know that,}\\\\:\hookrightarrow(x-y)^2=x^2-2xy+y^2\\\\\text{So,}\\\\:\implies\dfrac{(\sqrt{11})^2-2(\sqrt{11})(\sqrt7)+(\sqrt7)^2}{11-7}\\\\:\implies\dfrac{11-2\sqrt{77}+7}{4}\\\\:\implies\dfrac{18-2\sqrt{77}}{4}\\\\:\implies\dfrac{2\!\!\!/(9-\sqrt{77})}{4\!\!\!/_{\:2}}\\\\:\implies\dfrac{9-\sqrt{77}}{2}\\\\\text{So,}\\\\:\implies\dfrac{9-\sqrt{77}}{2}=a-b\sqrt{77}\\\\:\implies\dfrac{9}{2}-\dfrac{\sqrt{77}}{2}=a-b\sqrt{77}\\\\\text{Hence, on comparing the like terms,}\\\\\bf{:\implies a=\dfrac{9}{2}\:\:and\:\:b=\dfrac{1}{2}}

Formulae Used:

  • (x+y)(x-y)=x^2 - y^2
  • (x-y)^2=x^2 - 2xy + y^2
Similar questions