Root 12+ root 5 whole square find the value
Answers
Answered by
7
Heya !!
Hope it helps !!
Answered by
5
Heya !!
\begin{lgathered}(\sqrt{12} + \sqrt{5})^2 \\\\=(\sqrt{12}^2 + \sqrt{5}^2 + 2(\sqrt{12})(\sqrt{5}))\\\\\text{-- Using $(a + b)^2 = a^2 + b^2 + 2ab$}\\\\= 12 + 5 + 2(\sqrt{60})\\\\= 17 + 2(\sqrt{2 \times 3 \times 2 \times 5})\\\\= 17 + 2 \times 2 \times \sqrt{15}\\\\= 17 + 4 \sqrt{15}\\\\= 17 + 4 \times 3.87 \\ \\= 17 + 15.48 \\\\\\\boxed{= 32.48}\end{lgathered}(12+5)2=(122+52+2(12)(5))– Using (a+b)2=a2+b2+2ab=12+5+2(60)=17+2(2×3×2×5)=17+2×2×15=17+415=17+4×3.87=17+15.48=32.48
Hope it helps !!
\begin{lgathered}(\sqrt{12} + \sqrt{5})^2 \\\\=(\sqrt{12}^2 + \sqrt{5}^2 + 2(\sqrt{12})(\sqrt{5}))\\\\\text{-- Using $(a + b)^2 = a^2 + b^2 + 2ab$}\\\\= 12 + 5 + 2(\sqrt{60})\\\\= 17 + 2(\sqrt{2 \times 3 \times 2 \times 5})\\\\= 17 + 2 \times 2 \times \sqrt{15}\\\\= 17 + 4 \sqrt{15}\\\\= 17 + 4 \times 3.87 \\ \\= 17 + 15.48 \\\\\\\boxed{= 32.48}\end{lgathered}(12+5)2=(122+52+2(12)(5))– Using (a+b)2=a2+b2+2ab=12+5+2(60)=17+2(2×3×2×5)=17+2×2×15=17+415=17+4×3.87=17+15.48=32.48
Hope it helps !!
Similar questions