Math, asked by sreekanthmaney, 9 months ago

root 2+3/root 2-1=a+b root 2 then b-a is

Answers

Answered by rkuntal7686
0

Answer:

\frac{\sqrt{2}+3}{\sqrt{2}-1}=a + b \sqrt{2}

 \frac{\sqrt{2}+3}{\sqrt{2}-1} \times  \frac{ \sqrt{2} + 1 }{ \sqrt{2}  + 1} = a + b \sqrt{2}

 \frac{2+\sqrt{2}+3\sqrt{2} + 3}{{(\sqrt{2}) }^{2}-{(1)}^{2}} = a + b \sqrt{2}

 \frac{5 + 4 \sqrt{2} }{2 - 1} = a + b \sqrt{2}

 \frac{5 + 4 \sqrt{2} }{1} = a + b \sqrt{2}

5 + 4 \sqrt{2} = a + b \sqrt{2}

a = 5

b \sqrt{2} = 4 \sqrt{2}

b = 4

if u like my answer then please mark as brainliest.

Answered by amankumaraman11
0

Given,

 \bigstar \:  \:  \boxed{ \large \bf \frac{ \sqrt{2} + 3 }{ \sqrt{2}  - 1}  = a + b \sqrt{2}}  \\

  • To find : The value of a & b

<marquee>SOLUTION⤵⤵</marquee>

Solving LHS, {Rationalising the term of LHS}

 \huge \bf{\dfrac{ \sqrt{2}  + 3}{ \sqrt{2} - 1 }   \times  \dfrac{ \sqrt{2}  + 1}{ \sqrt{2} + 1 }}  \\  \\  \\  \sf \Longrightarrow  \frac{ \sqrt{2}  + 3( \sqrt{2} + 1 )}{ {( \sqrt{2} )}^{2} -  {1}^{2}  }  \\  \\ \sf \Longrightarrow  \frac{ \sqrt{2} ( \sqrt{2}  + 1) + 3( \sqrt{2}  + 1)}{2 - 1}  \\  \\ \sf  \Longrightarrow \frac{2 +  \sqrt{2}  + 3 \sqrt{2} + 3 }{1}  \\ \sf \Longrightarrow 2 + 3 + (1 + 3) \sqrt{2}  \\ \sf \Longrightarrow  \red5 +  \red4 \sqrt{ \red2}

Now, Equating the obtained value of LHS with RHS,

 \sf5 + 4 \sqrt{2}  = a + b \sqrt{2}  \\

Thus, From above observation, It is concluded that value of a is 5 and b is 4.

Hence,

   \widehat{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }

 \boxed{  \tt\Huge a =  \red5} \\  \boxed{  \tt\Huge b=  \red4}

\underbrace{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }

 \\  \\

  • MARK BRAINLIEST ⤵⤵
Similar questions