Math, asked by aashibaliyan25, 8 months ago

root 2 + root 3 upon root 18 - root 12 equal a minus b root 6​

Answers

Answered by lalitnit
6

Answer:

 \frac{ \sqrt{2 } +  \sqrt{3}  }{ \sqrt{18}  -  \sqrt{12} }  = a - b \sqrt{6}

 \frac{ \sqrt{2 } +  \sqrt{3}  }{ \sqrt{3 \times 3 \times 2}  -  \sqrt{2 \times 2 \times 3} }  = a - b \sqrt{6}

 \frac{ \sqrt{2 } +  \sqrt{3}  }{ 3\sqrt{2}  -  2\sqrt{3} }  = a - b \sqrt{6}

Rationalize

 \frac{ \sqrt{2 } +  \sqrt{3}  }{ 3\sqrt{2}  -  2\sqrt{3} }  \times  \frac{3 \sqrt{2} + 2 \sqrt{3}  }{3 \sqrt{2 } + 2 \sqrt{3}  }  = a - b \sqrt{6}

 \frac{ \sqrt{2 } +  \sqrt{3}  }{ 18 - 12 }  \times  \frac{3 \sqrt{2} + 2 \sqrt{3}  }{1 }  = a - b \sqrt{6}

 ({ \sqrt{2 } +  \sqrt{3} })  \times ( {3 \sqrt{2} + 2 \sqrt{3}  })= 6a - b \: 6 \sqrt{6}

12 + 2 \sqrt{6}  + 3 \sqrt{6}  + 6 = 6a - 6b \sqrt{6}

18 + 5 \sqrt{6}  = 6a - b \: 6 \sqrt{6}

Compare both side,

a =  \frac{18}{6}  = 3

And,

5 \sqrt{6}  =  - b \: 6 \sqrt{6}  \\ b =  -  \frac{5}{6}

Similar questions