Math, asked by mamahodiombath, 3 months ago

root 2/root 5 +root 3 rationalize​

Answers

Answered by amansharma264
7

EXPLANATION.

\sf \implies \displaystyle  \dfrac{\sqrt{2} }{\sqrt{5} + \sqrt{3} }

As we know that,

Rationalizes the equation, we get.

\sf \implies \displaystyle  \dfrac{\sqrt{2} }{\sqrt{5} + \sqrt{3} }  \times \dfrac{\sqrt{5} - \sqrt{3}  }{\sqrt{5}- \sqrt{3} }

\sf \implies \displaystyle  \dfrac{\sqrt{2} [\sqrt{5} - \sqrt{3}] }{[(\sqrt{5})^{2} - (\sqrt{3})^{2}  ]}

\sf \implies \displaystyle \dfrac{\sqrt{10} - \sqrt{6} }{5 - 3}

\sf \implies \displaystyle  \dfrac{\sqrt{2} }{\sqrt{5} + \sqrt{3} } =  \displaystyle \dfrac{\sqrt{10} - \sqrt{6} }{2}

Answered by diwanamrmznu
9

solution★

 =  \frac{ \sqrt{2} }{ \sqrt{5}  +  \sqrt{3} }  \\  \\

  • given quantity do rationalize to we get

  •  \frac{ \sqrt{2} }{ \sqrt{5}  +  \sqrt{3}  }  \times  \frac{ \sqrt{5 }  -  \sqrt{3} }{ \sqrt{5}  -  \sqrt{3} }  \\  \\
  • we know thAt formula of

  • (a + b)(a - b) = a {}^{2}  - b {}^{2}

  •  \frac{ \sqrt{2}( \sqrt{5}  -  \sqrt{3})  }{( \sqrt{5}) {}^{2} -  (\sqrt{3}) {}^{2}    }  \\  \\  \frac{ \sqrt{10}  -  \sqrt{6} }{5 - 3}   \\  \\  \frac{ \sqrt{10} -  \sqrt{6}  }{2}
  • ==================================

i hope it helps you

Similar questions