Math, asked by Zainab1234564, 1 year ago

Root 2 x square -3x -2 root 2 =0

Answers

Answered by BrainlyConqueror0901
159

Answer:

\huge{\boxed{\sf{ Roots\:of\:this\:eqn=2\sqrt{2}\:and\frac{-1}{\sqrt{2}} }}}

Step-by-step explanation:

\huge{\boxed{\sf{ SOLUTION- }}}

 \sqrt{2}  {x}^{2}  - 3x - 2 \sqrt{2}  = 0 \\

\huge{\boxed{\sf{ METHOD(1) }}}

\huge{\boxed{\sf{ middle\:term\:spliting }}}

 \sqrt{2}  {x}^{2}  - 3x - 2 \sqrt{2}  = 0 \\  \sqrt{2}  {x}^{2}  - 4x  + x - 2 \sqrt{2}  = 0 \\  \sqrt{2} x(x - 2 \sqrt{2} ) +1 (x - 2 \sqrt{2} ) = 0 \\ ( \sqrt{2}x  + 1)(x - 2 \sqrt{2} ) = 0 \\  \sqrt{2}x  + 1 = 0 \\  \sqrt{2} x =  - 1 \\ x =  \frac{ - 1}{ \sqrt{2} }----1st\:root  \\ x - 2 \sqrt{2}  = 0 \\ x = 2 \sqrt{2}----2nd\:root

\huge{\boxed{\sf{ METHOD(2)}}}

\huge{\boxed{\sf{ QUADRATIC\:FORMULA}}}

d =  {b}^{2}  - 4ac \\   \:  \:  \:  \:  =  ({ - 3})^{2}  - (4 \times  \sqrt{2}  \times  2\sqrt{2} ) \\  \:  \:  \:  \:  = 9 + 16 \\  \:  \:  \:  \:  = 25 \\ x =  \frac{ - b +  \sqrt{d} }{2a}  \\ x =  \frac{3 + 5}{2 \sqrt{2} }  \\ x =  \frac{8}{2 \sqrt{2} }  \\ x =  \frac{4 \sqrt{2} }{2}  \\ x = 2 \sqrt{2}  -  -  -  - 1st \: root \\ x =  \frac{ - b -  \sqrt{d} }{2a}  \\ x =  \frac{3 - 5}{2 \sqrt{2} }  \\ x =  \frac{ - 2}{2 \sqrt{2} }  \\ x =  \frac{ - 1}{ \sqrt{2} }  -  -  -  - 2nd \: root

\huge{\boxed{\sf{\green{ Roots\:of\:this\:eqn=2\sqrt{2}\:and\frac{-1}{\sqrt{2}} }}}}

Answered by bumithrabobbari
1

Answer:

√2x^-3x-2√2=0

Step-by-step explanation:

√2x^-3x-2√2=0

√2x^-4x+x-2√2=0

√2x(x-2√2)+1(x-2√2)=0

(√2x+1)(x-2√2)=0

√2x+1=0

√2x=-1

x=-1/√2

x=2√2

Similar questions