Math, asked by agrawalupanshu, 1 year ago

root 3 cot 20 - 4 cos 20

Answers

Answered by Anonymous
82

Question :  \sqrt{3} cot 20 - 4 cos 20

 \sqrt{3} \frac{cos 20}{sin 20}  - 4 cos 20

 \frac{\sqrt{3} cos 20 - 4 cos 20 sin 20}{sin 20}

 \frac{2(\frac{\sqrt{3}}{2}) cos 20 - 2 (2 cos 20 sin 20)}{sin20}

  \frac{\text{2 sin 60 cos 20 - 2 sin 40}}{\text{sin 20}}

∵ [2 sin x cos x = sin 2x]

 \frac{\text{(sin (60+20) + sin (60-20) - 2 sin 40}}{\text{sin 20}}

∵ [2 sin A cos B = sin (A+B) + sin (A-B)]

 \frac{\text{sin 80 + sin 40-2 sin 40}}{\text{sin 20}}

 \frac{\text{sin 80 - sin 40}}{\text{sin 20}}

 \frac{2 sin (\frac{80 - 40)}{2}) cos (\frac{80 + 40}{2})}{sin 20}

∵ [sin A - sin B = 2 sin  (\frac{A-B}{2}) cos (\frac{A+B}{2})]

 \frac{\text{2 sin 20 cos 60}}{\text{sin 20}}

⇒ 2 cos 60

 2 \times \frac{1}{2}

1


Answered by Anonymous
22

Given, √3*cot 20 - 4*cos 20

= √3*cos 20/sin 20 - 4*cos 20

= (√3*cos 20 - 4*cos 20*sin 20)//sin 20

= (√3*cos 20 - 2*2*cos 20*sin 20)//sin 20

= {√3*cos 20 - 2*sin (2*20)}//sin 20

= = {√3*cos 20 - 2*sin 40}//sin 20        {since sin 2x = 2*sin x*cosx}

= {2*sin 60*cos 20 - 2*sin 40}//sin 20           {since sin 60 = √3/2}

= {sin 80 + sin 40 - 2*sin 40}//sin 20 {since 2*sin A*cos B = sin (A + B) + sin (A - B)}

= {sin 80 - sin 40}//sin 20                      

= {2*cos 60*sin 20}/sin 20  {since sin A - sin B = 2 * sin (A - B)/2 *cos (A + B)/2}

= 2*cos 60                            

= 2 * 1/2            {since cos 60 = 1/2]

= 1 So, √3*cot 20 - 4*cos 20 = 1

Similar questions