root 3 sin theta - cos theta = zero then find the value of sin squared theta minus cos squared theta
Answers
Answered by
1
Step-by-step explanation:
Given:-
√3 sinθ - cosθ = 0
To find:-
Find the value of sin^2 θ - cos^2 θ ?
Solution:-
Given equation is √3 sinθ - cosθ = 0
=>√3 sinθ = cosθ
=>√3 = cosθ/sinθ
=>√3 = Cotθ
=>1/√3 = 1/Cotθ
=>1/√3 = tanθ
=>tanθ = 1/√3
=>tanθ = tan 30°
=> θ = 30°
The value of θ = 30°
Now , the value of sin^2 θ - cos^2 θ
=>(sin 30)^2 -( cos 30)^2
=>(1/2)^2 - (√3/2)^2
=>(1/4) - (3/4)
=>(1-3)/4
=>-2/4
=>-1/2
(or)
The value of sin^2 θ - cos^2 θ
=>-(-sin^2 θ +cos^2 θ)
=>-(cos^2θ -sin^2θ )
=>-(cos2θ )
=> -(cos(2×30°))
=>-(cos60°)
=>-(1/2)
=>-1/2
Answer:-
The value of sin^2 θ - cos^2 θ = -1/2
Check:-
Put θ = 30° in the LHS in the given equation√3 sinθ - cosθ
=>√3 sin30° - cos 30°
=>√3(1/2) - (√3/2)
=>(√3/2)-(√3/2)
=>(√3-√3)/2
=>0/2
=>0
=>RHS
LHS = RHS
Used formulae:-
- Cotθ = 1/Tanθ
- Tan 30° = 1/√3
- cos^2θ -sin^2θ = cos2θ
- cos60° = 1/2
Similar questions