Math, asked by Rainbow9847712138, 10 months ago

Root 3 sinA-cosA=root 2 .find the value of angle A

Answers

Answered by Anonymous
6

\huge\tt{\red{GIVEN}}:

\sqrt{3}sinA - cosA=\sqrt{2}

\huge\tt{\red{TO\:\: FIND}}:

★The value of angle A .

\huge\tt{\red{CONCEPT \:\:USED}}:

★We would be using the concept of Compound angles

\huge\tt{\red{ANSWER}}:

We have,

=> \sqrt{3}sinA - cosA=\sqrt{2}

Multiplying both sides by \dfrac{1}{2}

=>\dfrac{1}{2}(\sqrt{3}sinA - cosA) =\dfrac{1}{2}\sqrt{2}

=>\dfrac{\sqrt{3}}{2}sinA-\dfrac{1}{2}cosA=\dfrac{\sqrt{2}}{2}

=>sin60°sinA -cos60° cosA=\dfrac{\sqrt{2}}{\sqrt{2}×\sqrt{2}}

\large\green{\boxed{sin60°=\dfrac{\sqrt{3}}{2}}}

\large\red{\boxed{cos60°=\dfrac{1}{2}}}

=> sin(60°-A) =\dfrac{1}{\sqrt{2}}

\large\purple{\boxed{sin(A-B) =sinAcosB - cosA sinB}}

=>sin(60°-A) =sin45°

=> 60°-A = 45°

=> A = 60°-45°

. °.  A = 15°

Therefore the value of the angle A is 15°.

\huge\orange{\boxed{.°.A =15°}}

Similar questions