Math, asked by yashsinghys69371, 5 hours ago

Root 3 X square + 10 x minus 8 root 3 equal to zero

Answers

Answered by Anonymous
28

Step-by-step explanation:

\sqrt{3}  {x}^{2}  + 10x - 8 \sqrt{3}  = 0 \\  \\{  \underline{\bf \pmb{  \purple{Rough: }}}}\\   \red{\sqrt{3}   {x}^{2} \times  - 8 \sqrt{3}  =  \sqrt{9}   {x}^{2}  \times- 8  =  - 24   {x}^{2} }\\  \\  \red{ - 24 {x}^{2} =  12x \times - 2 x\: \:   \&  \: \:  12 x- 2x = 10x }\\  \\  \\  \Rightarrow\sqrt{3}  {x}^{2}  + 12x - 2x - 8 \sqrt{3}  = 0 \\   \\  \\ \underline{\bf \pmb{  \purple{Rough: }}}\\   \red{\frac{12x}{ \sqrt{3} {x}^{}  }  =  \frac{12}{ \sqrt{3}  }  \times  \frac{ \sqrt{3} }{ \sqrt{3} }  =  \frac{ {}^{4} \cancel{12} \sqrt{3} }{ \cancel3}  = 4 \sqrt{3} }\\   \\  \\ \Rightarrow \sqrt{3}x (x  + 4 \sqrt{3} ) - 2(x + 4 \sqrt{3} ) = 0 \\  \\\Rightarrow (x + 4 \sqrt{3} )( \sqrt{3} x - 2) = 0  \\ \\\Rightarrow x + 4 \sqrt{3}  = 0   \:   \:  \:  \:  \:   {\huge{\mid }}\:  \sqrt{3}  {x} - 2 = 0 \\  \\\Rightarrow x =  - 4 \sqrt{3}   \:  \:  \:  \: { \huge\mid } \:  \:  \:  \: \sqrt{3} x  = 2 \\  \\ {\huge\therefore } \:  \:  \large{\tt \pink{ x =  - 4 \sqrt{3}  \:  \: \: \tt{or} \: \:  \: x =  \frac{2}{ \sqrt{3} }} }

Similar questions