Math, asked by patelnihalreddy, 7 months ago

root 5 +root 3 by 2 root 5 _ 3 root 3 = a_b root 15​

Answers

Answered by thongamdeepak
1

Answer:

the question is not clear

Attachments:
Answered by prince5132
11

GIVEN :-

  • (√5 + √3)/(2√5 - 3√3) = a - b√15.

TO FIND :-

  • The value of a and b.

SOLUTION :-

 \\ : \implies \displaystyle \sf \: \frac{ \sqrt{5}  +  \sqrt{3} }{2 \sqrt{5}  - 3 \sqrt{3} }  = a - b \sqrt{15}  \\  \\  \\

 : \implies \displaystyle \sf \:  \dfrac{\big( \sqrt{5}  +  \sqrt{3}  \big) \big( 2 \sqrt{5}  + 3\sqrt{3} \big)}{  \big( 2 \sqrt{5}   -  3\sqrt{3} \big)\big( 2 \sqrt{5}  + 3\sqrt{3} \big) } = a - b \sqrt{15}  \\  \\  \\

: \implies \displaystyle \sf \:  \frac{ \sqrt{5} \big(2 \sqrt{5}   + 3 \sqrt{3}  \big) +  \sqrt{3} \big(2 \sqrt{5}   + 3 \sqrt{3}  \big)}{ \big(2 \sqrt{5}  \big) ^{2} -  \big(3 \sqrt{3}  \big) ^{2}  }  = a - b \sqrt{15}  \\  \\  \\

: \implies \displaystyle \sf \:  \frac{2 \sqrt{25} + 3 \sqrt{15}    + 2 \sqrt{15}   + 3 \sqrt{9} }{4 \sqrt{25}  - 9 \sqrt{9} } = a - b \sqrt{15}   \\  \\  \\

: \implies \displaystyle \sf \:  \frac{10 + 3 \sqrt{15} + 2 \sqrt{15}   + 9}{20 - 27} = a - b \sqrt{15}   \\  \\  \\

: \implies \displaystyle \sf \:  \frac{10 + 5 \sqrt{15}  + 9}{ - 7}  = a - b \sqrt{15}  \\  \\  \\

: \implies \displaystyle \sf \:  \frac{19 + 5 \sqrt{15} }{ - 7}  = a - b \sqrt{15}  \\  \\  \\

: \implies \displaystyle \sf \:   \frac{ - (19 + 5 \sqrt{15} )}{7}  = a - b \sqrt{15}  \\  \\  \\

: \implies \displaystyle \sf \:  \frac{ - 19 - 5 \sqrt{15} }{7}  = a - b \sqrt{15}  \\  \\  \\

: \implies \displaystyle \sf \:  \frac{ - 19}{7}  -  \frac{5}{7}  \sqrt{15}  = a - b \sqrt{15}  \\  \\  \\

On camparing Both the sides we get,

 \\  \\ : \implies \underline{  \boxed{ \displaystyle \sf \: \bold{ a =  \frac{ - 19}{7}  \: , \: b =  \frac{5}{7} }}}

Similar questions