Math, asked by yellapusailaja, 11 months ago

Root 5 + root 3 / root 5 - root 3 =a+b root 7

Answers

Answered by praneethks
0

Step-by-step explanation:

I think it should as b√15.

 \frac{ \sqrt{5} +  \sqrt{3} }{ \sqrt{5} -  \sqrt{3}} = a + b \sqrt{15} =  >

 \frac{ {( \sqrt{5} +  \sqrt{3})}^{2} }{( \sqrt{5} -  \sqrt{3})( \sqrt{5} +  \sqrt{3})} = a + b \sqrt{15} =  >

 \frac{5 + 3 + 2 \sqrt{15}}{5 - 3} = a + b \sqrt{15} =  >  \frac{8 + 2 \sqrt{15} }{2} =

a + b \sqrt{15} =  > a + b \sqrt{15} = 4 +  \sqrt{15}

Hence a=>4 and b=>1. Hope it helps you.

Answered by DaIncredible
0

Answer:

a = 4 and b = 1

Step-by-step explanation:

 L.H.S \:  =  \: \frac{ \sqrt{5} +  \sqrt{3} }{ \sqrt{5}  -  \sqrt{3} }  \\

Rationalizing the denominator we get:

  = \frac{ \sqrt{5} +  \sqrt{3}  }{ \sqrt{5} -  \sqrt{3}  }  \times  \frac{ \sqrt{5}  +  \sqrt{3} }{ \sqrt{5} +  \sqrt{3}  }  \\  \\  =  \frac{ {( \sqrt{5} )}^{2} +  {( \sqrt{3} )}^{2}   + 2. \sqrt{5}. \sqrt{3}  }{ {( \sqrt{5} )}^{2}  -  {( \sqrt{3} )}^{2} }  \\   \\  =  \frac{5 + 3 + 2 \sqrt{15} }{5 - 3}  \\  \\  =  \frac{8 + 2 \sqrt{15} }{2}  \\  \\  \bf  = 4 +  \sqrt{15}

4 + √15 = a + b√15

a = 4 and b = 1

Similar questions