Math, asked by RiteshNegi43, 3 months ago

root 7 plus root 2 divide by 9 plus root 14​

Answers

Answered by Anonymous
9

GIVEN :-

 \dfrac{ \sqrt{7}  +  \sqrt{2} }{9 +  \sqrt{14} }

TO FIND:-

Rationalize the denominator

SOLUTION:-

For Rationalising the denominator We have to multiply and divide with its Rationalizing factor

Rationalizing factor is nothing but just we have to change the sign

Rationalising factor of

 \sqrt{9}  +  \sqrt{14}  =  \sqrt{9}  -  \sqrt{14}

So, multiply and divide with this

 \dfrac{ \sqrt{7} +  \sqrt{2}  }{9  +  \sqrt{14} }  \times  \dfrac{9 -  \sqrt{14} }{9 -  \sqrt{14} }

 \dfrac{ \sqrt{7} (9 -  \sqrt{14} ) +  \sqrt{2}(9 -  \sqrt{14})  }{(9) {}^{2} -  \sqrt{(14} )  {}^{2} }

 \dfrac{9  \times \sqrt{7} -  \sqrt{7}  \times  \sqrt{14}  + 9 \times  \sqrt{2} -  \sqrt{{14} }  \times  \sqrt{2}   }{67}

 \dfrac{9 \sqrt{7}  -  \sqrt{98}  + 9 \sqrt{2} -  \sqrt{28}  }{67}

HENCE DENOMIANTOR RATIONALISED

Used formula :-

(a + b) (a-b) = a²-b² for Rationalising denominator

Similar questions