Math, asked by mzkksk, 1 year ago

root 8 + root 7 upon root 8 minus root 7 Y is equal to root 8 minus root 7 upon root 8 + root 7 find the value of x square + y square minus 3xy

Answers

Answered by DaIncredible
3
Hey friend,
Here is the answer you were looking for:
x =  \frac{ \sqrt{8} +  \sqrt{7}  }{ \sqrt{8}  -  \sqrt{7} }  \\
On rationalizing the denominator we get:

x =  \frac{ \sqrt{8}  +  \sqrt{7} }{ \sqrt{8}  -  \sqrt{7} }  \times  \frac{ \sqrt{8} +  \sqrt{7}  }{ \sqrt{8}  +  \sqrt{7} }  \\

Using the identities:

(a + b)^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab \\ (a + b)(a - b) =  {a}^{2}  -  {b}^{2}

x =  \frac{ {( \sqrt{8} })^{2} +  {( \sqrt{7} )}^{2}  + 2( \sqrt{8} )( \sqrt{7} ) }{ {( \sqrt{8}) }^{2} -  {( \sqrt{7} })^{2}  }  \\  \\ x =  \frac{8 + 7 + 2 \sqrt{56} }{8 - 7}  \\   \\ splitting \: 56 \\ \\ x = 15 + 2 \sqrt{2 \times 2 \times 2 \times 7}  \\  \\ x = 15 + 2 \times 2 \sqrt{14}  \\  \\ x = 15 + 4 \sqrt{14}

y =  \frac{ \sqrt{8}  -   \sqrt{7}  }{ \sqrt{8}   +   \sqrt{7} }  \\

On rationalizing the denominator we get:

y =  \frac{ \sqrt{8}  -   \sqrt{7}  }{ \sqrt{8}   +   \sqrt{7} }  \times  \frac{ \sqrt{8}   -   \sqrt{7} }{ \sqrt{8}   -   \sqrt{7} }  \\

Using the identities:

 {(a  -  b)}^{2}  =  {a}^{2}  +  {b}^{2}   -  2ab \\ (a + b)(a - b) =  {a}^{2}  -  {b}^{2}

y =  \frac{ {( \sqrt{8} )}^{2}  +  {( \sqrt{7} )}^{2}  - 2( \sqrt{8})( \sqrt{7} ) }{ {( \sqrt{8} })^{2}  -  {( \sqrt{7} )}^{2} }  \\  \\ y =  \frac{8 + 7 - 2 \sqrt{56} }{8 - 7}  \\  \\   (splitting \: 56) \\  \\ y = 15 - 2 \sqrt{2  \times 2 \times 2 \times 7}  \\  \\ y = 15 - 2 \times 2 \sqrt{14}  \\  \\ y = 15 - 4 \sqrt{14}
 {x}^{2}  +  {y}^{2}  - 3xy


Putting the values:

 {(15 + 4 \sqrt{14} )}^{2}  +  {(15 - 4 \sqrt{14}) }^{2}  - 3(15 + 4 \sqrt{14} )(15 - 4 \sqrt{14} ) \\  \\

Using same identities:

( {(15)}^{2}  +  {(4 \sqrt{14}) }^{2}  + 2(15)(4 \sqrt{14} )) + ( {(15)}^{2}  +  {(4 \sqrt{14}) }^{2}   - 2(15)(4 \sqrt{14} )) - 3( {(15)}^{2}  -  {(4 \sqrt{14} )}^{2} ) \\  \\  =( 225 + 224 + 120 \sqrt{14} ) + (225 + 224 - 120 \sqrt{14} ) - 3(225 - 224) \\  \\  = (449 + 120 \sqrt{14} ) + (449 - 120 \sqrt{14} ) - 3(1) \\  \\  = 449 + 120 \sqrt{14}  + 449 - 120 \sqrt{14}  - 3 \\ \\ ( + 120 \sqrt{14} \: and \:  - 120 \sqrt{14}  \: got \: cancel) \\    \\  = 898 - 3 \\  \\  = 895

Hope this helps!!

If you have any doubt regarding to my answer, feel free to ask in the comment section or inbox me if needed.

@Mahak24

Thanks...
☺☺

DaIncredible: thanx sir
DaIncredible: ^_^
Similar questions