Math, asked by rukmithaparuchuri, 11 months ago

Root ax-root by=b-a and root bx-root ay=0,then x+ y is

Answers

Answered by MaheswariS
6

\text{Given equations are}

\sqrt{ax}-\sqrt{by}=b-a

\sqrt{bx}-\sqrt{ay}=0

\text{It can be written as}

\sqrt{a}\sqrt{x}-\sqrt{b}\sqrt{y}-(b-a)=0

\sqrt{b}\sqrt{x}-\sqrt{a}\sqrt{y}=0

\text{By cross multiplication rule, we get}

\displaystyle\frac{\sqrt{x}}{0-(b-a)\sqrt{a}}=\frac{\sqrt{y}}{-(b-a)\sqrt{b}-0}=\frac{1}{a+b}

\displaystyle\frac{\sqrt{x}}{(a-b)\sqrt{a}}=\frac{\sqrt{y}}{(a-b)\sqrt{b}}=\frac{1}{a+b}

\implies\displaystyle\frac{\sqrt{x}}{(a-b)\sqrt{a}}=\frac{1}{a+b}

\implies\displaystyle\;\sqrt{x}=\frac{(a-b)\sqrt{a}}{a+b}

\implies\bf\displaystyle\;x=\frac{(a-b)^2a}{(a+b)^2}

\text{Similarly,}

\implies\bf\displaystyle\;y=\frac{(a-b)^2b}{(a+b)^2}

\text{Now,}

x+y

=\displaystyle\frac{(a-b)^2a}{(a+b)^2}+\frac{(a-b)^2b}{(a+b)^2}

=\displaystyle\frac{(a-b)^2(a+b)}{(a+b)^2}

=\displaystyle\frac{(a-b)^2}{a+b}

\implies\boxed{\bf\;x+y=\frac{(a-b)^2}{a+b}}

Similar questions