Math, asked by expertguru75, 11 months ago

root of 1+cosa/1-cosa = coseca +cota

Answers

Answered by prav96
3

Answer:

this is the answer for your question

Attachments:
Answered by Anonymous
5

Complete question :-

 \sf Prove \: that \:  \sqrt{ \dfrac{ 1 + \cos A }{1 -  \cos A} } =  \mathrm{cosec} A +  \cot A

Solution :-

 \sf \sqrt{ \dfrac{ 1 + \cos A }{1 -  \cos A} } =  \mathrm{cosec} A +  \cot A

Consider LHS

 \sf \sqrt{ \dfrac{ 1 + \cos A }{1 -  \cos A} }

Muliply both numerator and denominator by √(1 + cos A)

 \sf  = \sqrt{ \dfrac{ 1 + \cos A }{1 -  \cos A} \times  \dfrac{1 +  \cos A }{1 +  \cos A } } \\\\\\  \sf = \sqrt{ \dfrac{ (1 + \cos A)^2}{1^2-  \cos^2  A} } \\\\\\ \sf = \sqrt{ \dfrac{ (1 + \cos A)^2}{1-  \cos^2  A} } \\\\\\ \sf  = \sqrt{ \dfrac{ (1 + \cos A)^2}{  \sin^2  A} } \\\\\\   \bf \because  1  -  \cos^2 A =  \sin^2 A  \\\\\\   \sf  = \dfrac{ \sqrt{(1 + \cos A)^2}}{ \sqrt{\sin^2  A} } \\\\\\  \sf  = \dfrac{ 1 + \cos A}{  \sin  A}  \\\\\\  \sf =  \dfrac{1}{ \sin A } +  \dfrac{ \cos A}{ \sin A } \\\\\\  \sf =  \mathrm{cosec} A +  \cot A  \\\\\\   \bf \because  \dfrac{1}{ \sin A} =  \mathrm{cosec} A \:  \: and \:  \:  \dfrac{ \cos A}{ \sin A}  =  \cot A \\\\\\  \sf = R.H.S

Hence proved.

Similar questions