Root of 1-cosA by 1+cosA=coseecA-cotA
Answers
Answered by
0
Step-by-step explanation:
The proof is as follows-
To prove- √(1+cosA)/√(1-cosA)=cosecA + cot A
Proof-
LHS-
√(1+cosA)/√(1-cosA)
Multiplying with √(1+cosA) on both numerator and denominator, we have,
={√(1+cosA)*√(1+cosA)}/{√(1-cosA)*√(1+cosA)}
=[√{(1+cosA)*(1+cosA)}]/[√{(1-cosA)*(1+cosA)}]
={√(1+cosA)²}/{√(1²-cos²A)}
=(1+cosA)/√(sin²A)
=(1+cosA)/sinA
=(1/sinA)+(cosA/sinA)
=cosecA + cotA
Hence proved…
Answered by
0
Answer:
hey mate
hope this answer helps ya
pls mark as brainliest
follow me......if you want so;-)
Attachments:
Similar questions