root Of 1 + sinA / 1 - sinA = secA + tanA . prove this
Answers
Answered by
6
Sol:
√1-sin A / 1+sin A
= √(1-sin A) / (1+sin A ) x √(1-sin A) / (1-sin A )
= √(1-sin A)2 / (1-sin2 A )
= √(1-sin A)2 / cos2 A
= (1-sin A) / cos A
= (1/cos A - sin A/cos A)
= sec A - tan A.
√1-sin A / 1+sin A = sec A - tan A.
√1-sin A / 1+sin A
= √(1-sin A) / (1+sin A ) x √(1-sin A) / (1-sin A )
= √(1-sin A)2 / (1-sin2 A )
= √(1-sin A)2 / cos2 A
= (1-sin A) / cos A
= (1/cos A - sin A/cos A)
= sec A - tan A.
√1-sin A / 1+sin A = sec A - tan A.
Answered by
4
Answer
If you write this , you will get full marks for this question. Please mark me as brainiest
Attachments:
Similar questions