Math, asked by dj12387, 1 year ago


Root of ax²+bx+c =o are
 \alpha \: and \: \beta
find,
1 \div \gamma + 1 \div \beta

Answers

Answered by Anonymous
21

Solution

ax² + bx + c = 0

α and β are the roots

 \dfrac{1}{ \alpha }  +  \dfrac{1}{ \beta }

Taking LCM

 =  \dfrac{1( \beta ) + 1( \alpha )}{ \alpha \beta  }

 =  \dfrac{\beta +  \alpha }{ \alpha \beta  }

 =  \dfrac{ \alpha +   \beta  }{ \alpha \beta  }

By Quadratic formula

Roots of the equation :

  • α = [ - b + √(b² - 4ac) ] / 2a
  • β = [ - b - √(b² - 4ac) ] / 2a

Now, find the value of α + β and αβ

 \alpha  +  \beta  =  \dfrac{ - b +  \sqrt{ {b}^{2}  - 4ac} }{2a}  +  \dfrac{ - b  -   \sqrt{ {b}^{2}  - 4ac} }{2a}

  =  \dfrac{ - b +  \sqrt{ {b}^{2}  - 4ac}  + (- b  -   \sqrt{ {b}^{2}  - 4ac})}{2a}

  =  \dfrac{ - b +  \sqrt{ {b}^{2}  - 4ac}  - b  -   \sqrt{ {b}^{2}  - 4ac}}{2a}

  =  \dfrac{ - b }{a}

i.e α + β = - b/a

 \alpha\beta  =  \dfrac{ - b +  \sqrt{ {b}^{2}  - 4ac} }{2a} \times  \dfrac{ - b  -   \sqrt{ {b}^{2}  - 4ac} }{2a}

=  \dfrac{( - b +  \sqrt{ {b}^{2}  - 4ac} )( - b -  \sqrt{ {b}^{2} - 4ac }) }{2a(2a)}

=  \dfrac{( - b)^{2}  -  (\sqrt{ {b}^{2} - 4ac })^{2} }{4 {a}^{2} }

=  \dfrac{b^{2}  -  ({b}^{2} - 4ac )}{4 {a}^{2} }

=  \dfrac{b^{2}  -  {b}^{2}  + 4ac}{4 {a}^{2} }

=  \dfrac{ 4ac}{4 {a}^{2} }

=  \dfrac{ c}{a }

i.e αβ = c/a

Now, (α + β)/αβ

 =  \dfrac{  -  \frac{b}{a}  }{ \frac{c}{a} }

 =  -  \dfrac{b}{a} \times  \dfrac{a}{c}

 =  -  \dfrac{b}{c}

i.e (α + β)/αβ = - b/c

Hence, the value if 1/α + 1/β is - b/c

Answered by Sharad001
118

Question :-

</p><p> \sf{Root of  \:  \:  \: a {x}^{2}  + bx + c \:  \:  are } \\  \sf{</p><p>\alpha \: and \: \beta </p><p>find,} \:  \frac{1}{ \alpha}  +  \frac{1}{ \beta}

Answer :-

 \implies \: \boxed{\sf{ \frac{1}{ \alpha}  +  \frac{1}{ \beta}  =  \frac{ - b}{c} }} \:

Formula used :-

 \star \boxed{ \sf{ sum \: of \: roots =  \frac{ - coefficient \: of \: x}{coefficient \: of \:  {x}^{2} }} } \\  \\  \star  \boxed{\sf{product \: of \: roots =  \frac{constant \: term}{coefficient \: of \:  {x}^{2} } }}

Explanation :-

Given Quadratic polynomial is

→ a x² + b x + c

 \sf{given \: that \:  \alpha \:  \: and \:  \beta \: are \: roots \:}  \\  \sf{of \: this \: eqation} \\  \\  \therefore \sf{ \alpha +  \beta =  \frac{ - b}{a} }  \:  \:  \:  \:  \: ....eq.(1)\\   \sf{ and }\\   \rightarrow \:  \sf{ \alpha \:  \beta \:  =  \frac{c}{a} } \:  \:  \:  \: ....eq.(2)

___________________________

Now ,

 \rightarrow \:  \frac{1}{ \alpha}  +  \frac{1}{ \beta}  \\  \\  \rightarrow \:  \frac{ \alpha \:  +  \:  \beta}{ \alpha \:  \beta \: }   \\ \\ \sf{ from \:  \: eq.(1) \:  \: and \: eq.(2)} \\  \\  \rightarrow \:  \sf{  \frac{ \frac{ - b}{a} }{ \frac{c}{a} } } \\  \\  \rightarrow \sf{ \frac{ - b}{c} } \\  \\  \therefore  \boxed{\sf{ \frac{1}{ \alpha}  +  \frac{1}{ \beta}  =  \frac{ - b}{c} }}

___________________________

Similar questions