root of sec2A+cosec2A=tanA+cotA
Attachments:
Answers
Answered by
153
Root sec2A + cosec2A
=root 1/cos2A +1/sin2A
=root sin2A+cos2A / sin2Acos2A
=root 1/ sin2Acos2A
=1/sinAcosA
=sin2A+cos2A/sinA cosa (1=sin2A+cos2A)
=tan A + cot A
Hope this helps...... Mark it brainliest pls
=root 1/cos2A +1/sin2A
=root sin2A+cos2A / sin2Acos2A
=root 1/ sin2Acos2A
=1/sinAcosA
=sin2A+cos2A/sinA cosa (1=sin2A+cos2A)
=tan A + cot A
Hope this helps...... Mark it brainliest pls
Answered by
40
Answer:
L.H.S = square root of (sec^2 A+cosec^2 A)
= square root of (1/cos^2A + 1/sin^2A)
= square root of ((sin^2A + cos^2A)/cos^2A * sin^2A)
I taken LCMof cos^2A & sin^2A. which is cos^2A * sin^2A
now
The solution of ur question is listed below:-
L.H.S = square root of (1/ cos^2A * sin^2A)
because sin^2A + cos^2A =1
so L.H.S = (1/ cosA * sinA) After removed the square root.
L.H.S = (sin^2A + cos^2A/ cosA * sinA)
I written here (1 = sin^2A + cos^2A)
now, L.H.S = (sin^2A/cosA * sinA) + (cos^2A/cosA * sinA)
= (sinA/cosA) + (cosA/sinA)
= (tanA + cotA) = R.H.S Proved.
Similar questions