Math, asked by nehanwalanju3, 8 days ago

root of the given quadratic equation x^2+x-20=0​

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given quadratic equation is

 \red{\rm :\longmapsto\: {x}^{2} + x - 20 = 0}

We use method of splitting of middle terms, to get the values of x.

 \red{\rm :\longmapsto\: {x}^{2} + 5x - 4x - 20 = 0}

\red{\rm :\longmapsto\:x(x + 5) - 4(x + 5) = 0}

\red{\rm :\longmapsto\:(x + 5)(x - 4) = 0}

\red{\bf\implies \: \boxed{ \:\bf{ \:x \:  =  \:  -  \: 5 \:  \:  \: or \:  \:  \: x \:  =  \: 4 \: }}}

Alternative Method :-

Given quadratic equation is

\green{\rm :\longmapsto\: {x}^{2} + x - 20 = 0}

Using quadratic formula, we have

\green{ \boxed{ \sf{ \:x = \dfrac{ - b \:  \pm \:  \sqrt{ {b}^{2} - 4ac } }{2a} \: }}}

So, here

\green{\rm :\longmapsto\:a = 1}

\green{\rm :\longmapsto\:b = 1}

\green{\rm :\longmapsto\:c =  -  \: 20}

So, on substituting the values, we get

 \green{\rm :\longmapsto\:x = \dfrac{ - 1 \:  \pm \:  \sqrt{ {1}^{2} - 4(1)( - 20) } }{2(1)}}

 \green{\rm :\longmapsto\:x = \dfrac{ - 1 \:  \pm \:  \sqrt{1  + 80} }{2}}

 \green{\rm :\longmapsto\:x = \dfrac{ - 1 \:  \pm \:  \sqrt{81} }{2}}

 \green{\rm :\longmapsto\:x = \dfrac{ - 1 \:  \pm \: 9 }{2}}

 \green{\rm :\longmapsto\:x = \dfrac{ - 1 \:  +  \: 9 }{2} \:  \:  \: or \:  \:  \: x =  \dfrac{ - 1 \:   -   \: 9 }{2}}

 \green{\rm :\longmapsto\:x = \dfrac{8}{2} \:  \:  \: or \:  \:  \: x =  \dfrac{ - 10}{2}}

\green{\bf\implies \: \boxed{ \bf{ \:x \:  =  \: 4 \:  \:  \: or \:  \:  \: x \:  =  \:  -  \: 5 \: }}}

Alternative Method :-

Method of Completing squares

Given quadratic equation is

\rm :\longmapsto\: {x}^{2} + x - 20 = 0

\rm :\longmapsto\: {x}^{2} + x  = 20

Multiply by 4, on both sides, we get

\rm :\longmapsto\: {4x}^{2} + 4x  = 80

On adding 1 on both sides, we get

\rm :\longmapsto\: {4x}^{2} + 4x + 1  = 80 + 1

\rm :\longmapsto\: {(2x + 1)}^{2}  = 81

\rm :\longmapsto\:2x + 1 =  \pm \: 9

\rm :\longmapsto\:2x  =  - 1 \pm \: 9

\rm :\longmapsto\:2x  =  - 1 +  9 \:  \:  \: or \:  \:  \: 2x =  -1  - 9

\rm :\longmapsto\:2x  = 8 \:  \:  \: or \:  \:  \: 2x =  -10

\purple{\bf\implies \: \boxed{ \bf{ \:x \:  =  \: 4 \:  \:  \: or \:  \:  \: x \:  =  \:  -  \: 5 \: }}}

Similar questions