Math, asked by dj12387, 11 months ago

Root ofCosectheeta +1/
Cosectheeta-1
-Cosecant-1/
Cosectheeta+1=2tantheeta​

Answers

Answered by Anonymous
9

Correct Question :-

Prove that√[ (cosec θ + 1)/(cosec θ - 1) ] - √[ (cosec θ - 1)/(cosec θ + 1) ] = 2tan θ

Solution :-

 \rm  \sqrt{\dfrac{cosec \theta + 1}{cosec \theta - 1} } -   \sqrt{\dfrac{cosec \theta  -  1}{cosec \theta + 1} } = 2tan \theta \\  \\  \\

 \text{Consider LHS}

 \rm =   \sqrt{\dfrac{cosec \theta + 1}{cosec \theta - 1} } -   \sqrt{\dfrac{cosec \theta  - 1}{cosec \theta  +  1} }  \\  \\  \\

 \text{On rationalising each term we get,}

 \rm  =  \sqrt{\dfrac{cosec \theta + 1}{cosec \theta - 1} \times  \dfrac{cosec \theta + 1}{cosec \theta + 1} } -   \sqrt{\dfrac{cosec \theta  - 1}{cosec \theta  +  1}  \times \dfrac{cosec \theta  -  1}{cosec \theta  - 1} }  \\  \\  \\

 \rm  =  \sqrt{\dfrac{(cosec \theta + 1)^{2} }{(cosec \theta - 1)(cosec \theta + 1)} } -   \sqrt{\dfrac{(cosec \theta  - 1)^{2} }{(cosec \theta  +  1)(cosec \theta  - 1)} }  \\  \\  \\

 \rm  =  \sqrt{\dfrac{(cosec \theta + 1)^{2} }{cosec^{2}  \theta - 1} } -   \sqrt{\dfrac{(cosec \theta  - 1)^{2} }{cosec^{2}  \theta  - 1} }  \\  \\  \\

 \boxed{\boxed{ \sf \because (x + y)(x - y) {x}^{2} -  {y}^{2}  }} \\  \\  \\

 \rm  =  \sqrt{\dfrac{(cosec \theta + 1)^{2} }{cot^{2}  \theta} } -   \sqrt{\dfrac{(cosec \theta  - 1)^{2} }{cot^{2}  \theta } }  \\  \\  \\

 \boxed{\boxed{ \sf \because cosec^{2} \theta  - 1 = cot^{2} \theta }} \\  \\  \\

 \rm  =  \sqrt{ \bigg(\dfrac{cosec \theta + 1}{cot  \theta} \bigg) ^{2}  } -   \sqrt{ \bigg(\dfrac{cosec \theta  - 1 }{cot  \theta } \bigg)^{2}  }  \\  \\  \\

 \rm  = \dfrac{cosec \theta + 1}{cot  \theta} -\dfrac{cosec \theta  - 1 }{cot  \theta }   \\  \\  \\

 \rm  = \dfrac{cosec \theta + 1 - (cosec \theta - 1)}{cot  \theta}   \\  \\  \\

 \rm  = \dfrac{cosec \theta + 1 - cosec \theta  + 1}{cot  \theta}   \\  \\  \\

 \rm  = \dfrac{2}{cot  \theta}   \\  \\  \\

 \rm  = 2 \times \dfrac{1}{cot  \theta}   \\  \\  \\

 \rm  = 2tan \theta   \\  \\  \\

 \boxed{\boxed{ \sf \because  \dfrac{1}{cot \theta} = tan \theta }} \\  \\  \\

 \rm  = RHS \\  \\  \\

 \rm  \therefore LHS =  RHS \\  \\  \\

Hence proved.


BrainlyConqueror0901: Nice : )
Anonymous: Thanks :)
Tomboyish44: Great answer!
Anonymous: Thanks :)
BraɪnlyRoмan: Great bro..
Answered by Sharad001
101

Question :-

 \large \textsf{prove \: that} \\  \\   \footnotesize \: \sqrt{ \frac{cosec \:  \theta  +  1}{cosec \:  \theta  - 1} }  -  \sqrt{ \frac{cosec \:  \theta   - 1}{cosec \:  \theta \:  + 1} }  = 2 \: tan \: \theta \:  \\

Formula used :-

 \sf{ \star \: tan  \: \theta =  \frac{1}{cot \:  \theta} }\\  \\  \sf{ \star \:  {cosec}^{2}   \theta -  {cot}^{2}  \theta \:  = 1}

Proof :-

Taking LHS ( left hand side )

\footnotesize \sf{\sqrt{ \frac{cosec \:  \theta  +  1}{cosec \:  \theta  - 1} }  -  \sqrt{ \frac{cosec \:  \theta   - 1}{cosec \:  \theta \:  + 1} }}  \:  \\

Now rationalising ,

 \scriptsize\sf{\sqrt{ \frac{cosec \:  \theta  +  1}{cosec \:  \theta  - 1}  \times  \frac{cosec \:  \theta \:  + 1}{cosec \:  \theta \:  + 1} }  -  \sqrt{ \frac{cosec \:  \theta   - 1}{cosec \:  \theta \:  + 1}  \times  \frac{cosec \:  \theta \:  - 1}{cosec \:  \theta \:  - 1} }  \: } \\  \\   \scriptsize \sf{ \sqrt{ \frac{ {( cosec \:  \theta \:  + 1)}^{2} }{(cosec \:  \theta \:  - 1)(cosec \:  \theta \:  + 1)} }  -  \sqrt{ \frac{ {(cosec \:  \theta \:  - 1)}^{2} }{(cosec \:  \theta \:  + 1)(cosec \:  \theta \:  - 1)} } } \\  \\  \because \sf{ \: (x + y)(x - y) =  {x}^{2}  -  {y}^{2} } \\  \\  \scriptsize \sf{ \sqrt{ \frac{ {(cosec \:  \theta \:  + 1)}^{2} }{ {cosec}^{2}  \theta \:  - 1} }  -   \sqrt{ \frac{ {(cosec \:  \theta   - 1)}^{2} }{ {cosec}^{2} \theta \:  - 1 } }  }\\  \\  \boxed{  \sf{\because \:  {cosec}^{2}  \theta \:  - 1 =  {cot}^{2}  \theta \:} } \\   \\   \scriptsize \sf{ \sqrt{  { \bigg( \frac{cosec \:  \theta \:   + 1}{cot \:  \theta} \bigg) }^{2} }  -  \sqrt{ { \bigg( \frac{cosec \:  \theta \:   - 1}{cot \:  \theta} \bigg) }^{2} }}  \\  \\   \sf{ \frac{cosec \:  \theta + 1}{cot \:  \theta}   -  \frac{cosec \:  \theta \:  - 1}{cot \:  \theta \: }  }\\  \\ \rightarrow \sf{  \frac{2}{cot \:  \theta}  }\\  \\  \because \:  \sf{ \frac{1}{cot \:  \theta}  = tan \:  \theta} \\  \\  \rightarrow \: \sf{ 2 \: tan \:  \theta} \:  \\  \\

LHS = RHS

hence proved .

Similar questions