English, asked by girubagle, 1 year ago

root sec sq theta.+root cosec sq. theta=tan theta+cot theta prove it​

Answers

Answered by arzaankhan521
0

Explanation:

its your answer is ready

Attachments:
Answered by Anonymous
19

\blue\bigstarQUESTION:-

Prove that

 \to \bf \sqrt{sec^{2} \theta + cosec ^{2}  \theta}  = tan \theta  + cot \theta

\red\bigstarPROOF:-

⠀⠀⠀⠀

We have

 \bf LHS=  \sqrt{ {sec}^{2}  \theta+ {cosec}^{2}  \theta}

⠀⠀⠀⠀

Using below trignometric identity

 \boxed{ \bf \frac{1}{ {cos}\theta }  = sec \theta, \frac{1}{sin \theta}=cosec \theta}

⠀⠀⠀⠀

We have ,

 \implies \bf \sqrt{ \dfrac{1}{ {cos}^{2} \theta } +  \dfrac{1}{ {sin}^{2} \theta }  }

 \implies \bf  \sqrt{ \dfrac{ {sin}^{2 }  \theta + {cos}^{2} \theta }{sin^{2}  \theta \: cos^{2}  \theta} }

⠀⠀⠀⠀

Using below trignometric identity

 \boxed { \bf  {sin}^{2} \theta + cos^{2}\theta = 1}

⠀⠀⠀⠀

We have

 \implies  \bf\sqrt{ \dfrac{1}{ {sin}^{2} \theta \: cos^{2} \theta} }

 \implies \bf \dfrac{ \sqrt{1} }{ \sqrt{sin^{2} \theta \: cos^{2} \theta} }

 \implies \bf  \dfrac{1}{sin \theta \: cos \theta}

⠀⠀⠀⠀

Again using below trignometric identity

  \boxed{ \bf  sin^{2}  \theta + cos ^{2} \theta = 1 }

⠀⠀⠀⠀

We have

 \implies \bf \dfrac{ {sin}^{2}  \theta + cos^{2}  \theta}{sin \theta \times cos \theta}

 \implies \bf \dfrac{ {sin}^{2}  \theta}{sin \theta \: cos \theta}  + \dfrac{ {cos}^{2}  \theta}{sin \theta \: cos \theta}

 \implies \bf\dfrac{  \cancel{sin\theta  }\times sin \theta}{ \cancel{sin \theta  } \times \: cos \theta}  +\dfrac{ cos \theta \times \cancel{ cos \theta}}{sin \theta  \times  \cancel{cos \theta}}

 \implies \bf \dfrac{sin \theta}{cos \theta}  +  \dfrac{cos \theta}{sin \theta}

⠀⠀⠀⠀

Using below trignometric identity

 \boxed {\bf \frac{sin \theta}{cos \theta}  = tan \theta \: , \frac{cos \theta}{sin \theta }  = cot \theta}

We have

 \implies \bf tan \theta + cos \theta

⠀⠀⠀⠀

=RHS

Therefore,LHS=RHS .......Proved

Similar questions