Math, asked by raghav239, 11 months ago

root whole root 11 + 4 root 7 minus whole root 11 - 4 root 7 is equal to 4 prove​

Answers

Answered by deepj8617
3

Answer:

a=

2

9

,b=

2

1

Step-by-step explanation:

LHS=\frac{\sqrt{11}-\sqrt{7}}{\sqrt{11}+\sqrt{7}}LHS=

11

+

7

11

7

/* Rationalising the denominator, we get

=\frac{(\sqrt{11}-\sqrt{7})(\sqrt{11}-\sqrt{7})}{(\sqrt{11}+\sqrt{7})(\sqrt{11}-\sqrt{7})}=

(

11

+

7

)(

11

7

)

(

11

7

)(

11

7

)

=\frac{(\sqrt{11}-\sqrt{7})^{2}}{(\sqrt{11})^{2}-(\sqrt{7})^{2}}=

(

11

)

2

−(

7

)

2

(

11

7

)

2

=\frac{11+7-2\times \sqrt{11}\times \sqrt{7}}{11-7}=

11−7

11+7−2×

11

×

7

/* By algebraic identities:

i) (a-b)² = a²+b²-2ab

ii) (a+b)(a-b) = a² - b² */

= \frac{18-2\sqrt{77}}{4}=

4

18−2

77

=\frac{2(9-\sqrt{77})}{4}=

4

2(9−

77

)

=\frac{9-\sqrt{77}}{2}=

2

9−

77

\begin{lgathered}=\frac{9}{2}-\frac{\sqrt{77}}{2}\\=RHS\end{lgathered}

=

2

9

2

77

=RHS

Therefore,

\begin{lgathered}\frac{9}{2}-\frac{\sqrt{77}}{2}\\=a-b\sqrt{77}\end{lgathered}

2

9

2

77

=a−b

77

/* Compare both sides, we get

a=\frac{9}{2},\:b=\frac{1}{2}a=

2

9

,b=

2

1

•••♪

Similar questions