Math, asked by Spartan117Himanshu, 1 year ago

(root x + 1/rootx)² differentiate with respect to x

Answers

Answered by Srinaya
90

Step-by-step explanation:

we get the abbreviation for the 2nd step by using the identity (a+b)^2 .This is the answer.Hope this helps.

Attachments:
Answered by pulakmath007
9

\displaystyle \sf{ \frac{d}{dx}  \bigg[ {\bigg( \sqrt{x}  +  \frac{1}{ \sqrt{x} }  \bigg)}^{2} \bigg]   = 1 -  \frac{1}{ {x}^{2} } }

\displaystyle \sf{ \bf{Given : } {\bigg( \sqrt{x}  +  \frac{1}{ \sqrt{x} }  \bigg)}^{2} }

To find : To differentiate

Solution :

Let y be given function

Then we have

\displaystyle \sf{y =   {\bigg( \sqrt{x}  +  \frac{1}{ \sqrt{x} }  \bigg)}^{2} }

\displaystyle \sf{ \implies \: y =   {( \sqrt{x} )}^{2}   + 2. \sqrt{x}. \frac{1}{ \sqrt{x} }  +  {\bigg(   \frac{1}{ \sqrt{x} }  \bigg)}^{2} }

\displaystyle \sf{ \implies \: y =   x + 2 +  \frac{1}{x}  }

Differentiating both sides with respect to x we get

\displaystyle \sf{  \:  \frac{dy}{dx}  =   \frac{d}{dx}  \bigg( x + 2 +  \frac{1}{x}  \bigg) }

\displaystyle \sf{ \implies \:  \frac{dy}{dx}  =   \frac{d}{dx}  \bigg( x   \bigg)  + \frac{d}{dx}  \bigg(  2   \bigg) +\frac{d}{dx}  \bigg(  \frac{1}{x}  \bigg) }

\displaystyle \sf{ \implies \:  \frac{dy}{dx}  =   \frac{d}{dx}  \bigg( x   \bigg)  + \frac{d}{dx}  \bigg(  2   \bigg) +\frac{d}{dx}  \bigg(  {x}^{ - 1}  \bigg) }

\displaystyle \sf{ \implies \:  \frac{dy}{dx}  =  1 + 0 -  {x}^{ - 1 - 1}  }

\displaystyle \sf{ \implies \:  \frac{dy}{dx}  = 1 -  {x}^{ - 2}  }

\displaystyle \sf{ \implies \:  \frac{dy}{dx}  =   1   -  \frac{1}{ {x}^{2} }  }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If integral of (x^-3)5^(1/x^2)dx=k5^(1/x^2), then k is equal to?

https://brainly.in/question/15427882

2. If integral of (x^-3)5^(1/x^2)dx=k5^(1/x^2), then k is equal to?

https://brainly.in/question/15427882

Similar questions