Math, asked by amazingsanjay18, 3 months ago

root11-1÷root11+1=a-b root11​

Answers

Answered by Itsnav
2

Solution:-

  \frac{\sqrt{11}  - 1}{ \sqrt{11}  +  1}  = a - b  \sqrt{11}  \\  \\   \frac{\sqrt{11}  - 1}{ \sqrt{11}  +  1} \times \frac{\sqrt{11}  - 1}{ \sqrt{11}   -   1}  = a - b  \sqrt{11} \\  \\ \frac{{ \:(\sqrt{11}  - 1) }^{2} }{  { (\sqrt{11}) }^{2}    -   {1}^{2} }   = a - b  \sqrt{11} \\  \\   \frac{ \: { (\sqrt{11} )}^{2}   +  {(1)}^{2}  - 2 \times  \sqrt{11}  \times 1 \: }{11 - 1}  = a - b  \sqrt{11} \\  \\  \frac{11 + 1 - 2 \sqrt{11} }{10}  = a - b  \sqrt{11}  \\  \\  \frac{12 - 2 \sqrt{11} }{10}  = a - b  \sqrt{11} \\  \\  \frac{6 -  \sqrt{11} }{5}  = a - b  \sqrt{11} \\  \\  \frac{6}{5}  -  \frac{1}{5}  \sqrt{11}  = a - b  \sqrt{11} \\ compare \: both \: side  \\ \\ a =  \frac{6}{5} \:   \: and \:  \: b =  \frac{1}{5}

ɟoןןoʍ ɯǝ

Similar questions