Math, asked by mukul3215, 8 months ago

root11-root7/root11+root7=a-b root77​

Answers

Answered by Anonymous
5

Answer:

a=

2

9

,b=

2

1

Step-by-step explanation:

LHS=\frac{\sqrt{11}-\sqrt{7}}{\sqrt{11}+\sqrt{7}}LHS=

11

+

7

11

7

/* Rationalising the denominator, we get

=\frac{(\sqrt{11}-\sqrt{7})(\sqrt{11}-\sqrt{7})}{(\sqrt{11}+\sqrt{7})(\sqrt{11}-\sqrt{7})}=

(

11

+

7

)(

11

7

)

(

11

7

)(

11

7

)

=\frac{(\sqrt{11}-\sqrt{7})^{2}}{(\sqrt{11})^{2}-(\sqrt{7})^{2}}=

(

11

)

2

−(

7

)

2

(

11

7

)

2

=\frac{11+7-2\times \sqrt{11}\times \sqrt{7}}{11-7}=

11−7

11+7−2×

11

×

7

/* By algebraic identities:

i) (a-b)² = a²+b²-2ab

ii) (a+b)(a-b) = a² - b² */

= \frac{18-2\sqrt{77}}{4}=

4

18−2

77

=\frac{2(9-\sqrt{77})}{4}=

4

2(9−

77

)

=\frac{9-\sqrt{77}}{2}=

2

9−

77

\begin{gathered}=\frac{9}{2}-\frac{\sqrt{77}}{2}\\=RHS\end{gathered}

=

2

9

2

77

=RHS

Therefore,

\begin{gathered}\frac{9}{2}-\frac{\sqrt{77}}{2}\\=a-b\sqrt{77}\end{gathered}

2

9

2

77

=a−b

77

/* Compare both sides, we get

a=\frac{9}{2},\:b=\frac{1}{2}a=

2

9

,b=

2

1

Step-by-step explanation:

Mark me as brainliest answer

Answered by Anonymous
0

Answer:

STEP

1

:

-10

Simplify ———

39

Equation at the end of step

1

:

6 -22 26 -10

(——•———)-(———•———)

55 9 125 39

STEP

2

:

26

Simplify ———

125

Equation at the end of step

2

:

6 -22 26 -10

(—— • ———) - (——— • ———)

55 9 125 39

STEP

3

:

-22

Simplify ———

9

Equation at the end of step

3

:

6 -22 -4

(—— • ———) - ——

55 9 75

STEP

4

:

6

Simplify ——

55

Equation at the end of step

4

:

6 -22 -4

(—— • ———) - ——

55 9 75

STEP

5

:

Calculating the Least Common Multiple

5.1 Find the Least Common Multiple

The left denominator is : 15

The right denominator is : 75

Number of times each prime factor

appears in the factorization of:

Prime

Factor Left

Denominator Right

Denominator L.C.M = Max

{Left,Right}

3 1 1 1

5 1 2 2

Product of all

Prime Factors 15 75 75

Least Common Multiple:

75

Calculating Multipliers :

5.2 Calculate multipliers for the two fractions

Denote the Least Common Multiple by L.C.M

Denote the Left Multiplier by Left_M

Denote the Right Multiplier by Right_M

Denote the Left Deniminator by L_Deno

Denote the Right Multiplier by R_Deno

Left_M = L.C.M / L_Deno = 5

Right_M = L.C.M / R_Deno = 1

Similar questions