Math, asked by petetirevathi, 8 months ago

root2 + root 2 + root 2 + root 2 + root 2​

Answers

Answered by giriaishik123
0

Answer:

\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+.....................\infty }}}}

Let,

\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+.....................\infty }}}}=x

\sqrt{2+x}=x

2+x=x^2

\implies x^2 - x - 2 =0

x^2 - 2x + x - 2=0

x(x-2)+1(x-2)=0

(x+1)(x-2)=0

⇒ x = - 1  or x = 2,

x = - 1  is not possible, because value of square root of a number can not be negative,

\implies \sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+.....................\infty }}}} = 2

Answered by reva4math
0

Answer:

5 root 2

Step-by-step explanation:

5 root 2

Similar questions