root2/root6-root2-root3/root6+root2 simplify
Answers
Step-by-step explanation:
Answer:
Given expression is,
\frac{\sqrt{6} }{\sqrt{2} + \sqrt{3} } + \frac{3\sqrt{2} }{\sqrt{6}+\sqrt{3} } - \frac{4\sqrt{3} }{\sqrt{6}+\sqrt{2} }2+36+6+332−6+243
By rationalizing each term,
=\frac{\sqrt{6}(-\sqrt{2} + \sqrt{3}) }{(\sqrt{3})^2 - (\sqrt{2})^2 } + \frac{3\sqrt{2}(\sqrt{6}-\sqrt{3}) }{(\sqrt{6})^2-(\sqrt{3})^2 } - \frac{4\sqrt{3}(\sqrt{6}-\sqrt{2}) }{(\sqrt{6})^2-(\sqrt{2})^2 }=(3)2−(2)26(−2+3)+(6)2−(3)232(6−3)−(6)2−(2)243(6−2)
=\sqrt{6}(-\sqrt{2} + \sqrt{3})+\sqrt{2}(\sqrt{6}-\sqrt{3} ) -\sqrt{3} (\sqrt{6}-\sqrt{2} )=6(−2+3)+2(6−3)−3(6−2)
=-\sqrt{12} + \sqrt{18} + \sqrt{12} - \sqrt{6} - \sqrt{18} + \sqrt{6}=−12+18+12−6−18+6
=0=0
Hence,
\frac{\sqrt{6} }{\sqrt{2} + \sqrt{3} } + \frac{3\sqrt{2} }{\sqrt{6}+\sqrt{3} } - \frac{4\sqrt{3} }{\sqrt{6}+\sqrt{2} }=02+36+6+332−