Math, asked by sindhujanaidu, 1 year ago

Root3-1/root3+1=a+b root3

Answers

Answered by Anonymous
12

By Rationalising the denominator, we have

 \large\bold{\frac{ \sqrt{3}  - 1}{ \sqrt{3}  + 1}  = a + b \sqrt{3}}

 \large \frac{ \sqrt{3}  - 1}{ \sqrt{3} + 1 }  =  \frac{ \sqrt{3}  - 1}{ \sqrt{3} + 1 }  \times  \frac{ \sqrt{3 }  - 1}{ \sqrt{3}  - 1 }

 \large=  \frac{( \sqrt{3} - 1)( \sqrt{3} - 1)  }{( \sqrt{3} + 1)( \sqrt{3} - 1)  }

\large= \frac{( \sqrt{3} - 1)^{2} }{ (\sqrt{3} ) ^{2} - {1}^{2} }

 \large = \frac{( \sqrt{3} ) ^{2}  + 1 - 2 \sqrt{3} }{( \sqrt{3 })^{2}  - 1 }

 \large= \frac{3 + 1 - 2  \sqrt{3} }{3 - 1}

 \large =  \frac{4 - 2 \sqrt{3} }{2}

 \large = 2 -  \sqrt{3}

 \large\frac{ \sqrt{3}  - 1}{ \sqrt{3} + 1 }  = a + b \sqrt{3}

 \large⇒2 -  \sqrt{3}  = a + b \sqrt{3}

 \large⇒a + b \sqrt{3}  = 2 + ( - 1) \sqrt{3}

 \large\fbox\bold{  a = 2 \: and \: b   =  - 1}

[ By equating rational and irrational parts ]

Similar questions