Math, asked by saiganesh38, 9 months ago

root5-2/root5+2-root5+2/root5-2=a+b root5​

Answers

Answered by Anonymous
20

HOPE IT HELPS :

ACCORDING TO THE QUESTION :

[(\sqrt{5}-2)/(\sqrt{5}+2 )]  - [(\sqrt{5}+2 )/(\sqrt{5}-2)]

TAKING LCM

[(\sqrt{5}-2)^{2} - (\sqrt{5}+2)^{2} ]/[ (\sqrt{5})^{2} - (2)^{2} ]

[ 5 + 4 - 4\sqrt{5} - (5 + 4 + 4\sqrt{5} )] / [5 - 4]

[ - 8\sqrt{5} ]

COMPARING WITH a + b\sqrt{5} we get

a = 0  and b = -8\sqrt{5}

STAY HOME STAY SAFE

x JOKER ALWAYS x

Answered by rehaan007
5

Answer:

HOPE IT HELPS :

ACCORDING TO THE QUESTION :

[(\sqrt{5}-2)/(\sqrt{5}+2 )] - [(\sqrt{5}+2 )/(\sqrt{5}-2)][(5−2)/(5+2)]−[(5+2)/(5−2)]

TAKING LCM

[(\sqrt{5}-2)^{2} - (\sqrt{5}+2)^{2} ]/[ (\sqrt{5})^{2} - (2)^{2} ][(5−2)2−(5+2)2]/[(5)2−(2)2]

[ 5 + 4 - 4\sqrt{5} - (5 + 4 + 4\sqrt{5} )] / [5 - 4][5+4−45−(5+4+45)]/[5−4]

[ - 8\sqrt{5} ][−85]

COMPARING WITH a + b\sqrt{5}a+b5 we get

a = 0  and b = -8\sqrt{5}−85

STAY HOME STAY SAFE

Similar questions