root5 = p + root q......Find p and q
Answers
Answered by
0
Answer:
p=0p=0
q=\frac{1}{11}q=
11
1
Step-by-step explanation:
We have,
\frac{7+\sqrt{5}}{7-\sqrt{5}}-\frac{7-\sqrt{5}}{7+\sqrt{5}}=p-7\sqrt{5}q
7−
5
7+
5
−
7+
5
7−
5
=p−7
5
q
⇒ \frac{(7+\sqrt{5})^2-(7-\sqrt{5})^2}{(7)^2-(\sqrt{5})^2}=p-7\sqrt{5}q
(7)
2
−(
5
)
2
(7+
5
)
2
−(7−
5
)
2
=p−7
5
q
⇒ $$\frac{49+5+14\sqrt{5}-49-5-14\sqrt{5}}{49-5}=p-7\sqrt{5}q$$
( Since, (a±b)² = a² ± 2ab + b² )
⇒ $$\frac{28\sqrt{5}}{44}=p-7\sqrt{5}q$$
⇒ $$\frac{7\sqrt{5}}{11}=p-7\sqrt{5}q$$
⇒ $$0-7\sqrt{5}(-\frac{1}{11})=p-7\sqrt{5}q$$
By comparing,
We get,
$$p=0$$
$$q=-\frac{1}{11}$$
please mark me as brainloest and follow me
Similar questions