Math, asked by safithahamedsulfikar, 3 months ago

root5 +root3 by root5 - root 3 = а- b root15​

Answers

Answered by TYKE
25

Question :

 \sf \small \frac{ \sqrt{5} +  \sqrt{3}  }{ \sqrt{5}  -  \sqrt{3} }  = a - b \sqrt{15}

Process :

  • First we have to rationalize the denominator on the left hand side

  • Then we need to simplify them

  • And at last we need to compare both the sides to get the value of a and b

Solution :

 \sf \small \frac{ \sqrt{5} +  \sqrt{3}  }{ \sqrt{5}  -  \sqrt{3} }  = a - b \sqrt{15}

Using formula (a + b)(a – b) = a² – b² to get the denominator

Here,

  • (5)²

  • (3)²

 \sf \small \rightarrow \frac{ (\sqrt{5} +  \sqrt{3})( \sqrt{5} +  \sqrt{3}  )  }{( \sqrt{5}  -  \sqrt{3} )( \sqrt{5}  +  \sqrt{3}  )}  = a - b \sqrt{15}

  \sf \small \rightarrow \frac{( \sqrt{5} +  \sqrt{3})^{2}   }{ {( \sqrt{5} )}^{2}  -  {( \sqrt{3}) }^{2} }   = a - b \sqrt{15}

Using formula (a+b)² = a² + b² + 2ab to get the numerator

Here,

  • (5)²

  • (3)²

  • 2ab 253

  \sf \small \rightarrow \frac{( \sqrt{5} )^{2} + 2 \times  \sqrt{5} \times  \sqrt{3}  +   {( \sqrt{3}) }^{2}   }{5 - 3}  = a - b \sqrt{15}

 \sf \small \rightarrow  \frac{5  + 2 \sqrt{15}  + 3}{2}  = a - b \sqrt{15}

 \sf \small \rightarrow  \frac{5 + 3 + 2 \sqrt{15} }{2}  = a - b \sqrt{15}

 \sf \small \rightarrow  \frac{8 + 2 \sqrt{15} }{2}  = a - b \sqrt{15}

 \sf \small \rightarrow  \frac{2(4 +  \sqrt{15}) }{2}  = a - b \sqrt{15}

 \sf \small \rightarrow  4 +  \sqrt{15}  = a - b \sqrt{15}

Comparing both sides we get

  • a 4

  • b -1
Similar questions