Math, asked by jiakhelal, 1 year ago

root5x^2 + 2x -3 root 5

Answers

Answered by LovelyG
5

Answer:

(x + √5)(√5x - 3)

Step-by-step explanation:

Given that ;

 \tt  \sqrt{5} x {}^{2}  + 2x - 3 \sqrt{5}

We can factorise the given equation by splitting the middle term. We need to find two numbers such that their product is (-3√5 * √5) = (-15). And their sum is 2.

Therefore, such two numbers can be 5 and 3.

 \implies \tt  \sqrt{5} x {}^{2}  + 2x - 3 \sqrt{5}  \\  \\  \implies \tt  \sqrt{5} {x}^{2}  + 5x - 3x - 3 \sqrt{5}  \\  \\  \implies \tt  \sqrt{5} x( x  +  \sqrt{5} ) - 3(x +  \sqrt{5} ) \\  \\  \implies \tt (x +  \sqrt{5} )( \sqrt{5} x - 3)

Hence, the answer is (x + √5)(√5x - 3).

Answered by BrainlyConqueror0901
113

Answer:

\huge{\boxed{\sf{x=-\sqrt{5}\:and\frac{3}{\sqrt{5}}}}}

Step-by-step explanation:

\huge{\boxed{\sf{SOLUTION-}}}

\huge{\boxed{\sf{METHOD(1)-}}}

 \sqrt{5}  {x}^{2}  + 2x - 3  \sqrt{5}   = 0 \\  \sqrt{5}  {x}^{2}  + 5x - 3x - 3 \sqrt{5}  = 0 \\  \sqrt{5} x(x  +  \sqrt{5} ) - 3(x  +  \sqrt{5} ) = 0 \\  (\sqrt{5} x - 3)(x  + \sqrt{5} ) = 0 \\  \sqrt{5} x - 3 = 0 \\  \sqrt{5} x = 3 \\ x =  \frac{3}{ \sqrt{5} }  -  -  -  -  - 1st \: root \\ x  +  \sqrt{5}  = 0 \\ x =   - \sqrt{5}  -  -  -  -  - 2nd \: root

\huge{\boxed{\sf{METHOD(2)-}}}

d =  {b}^{2} - 4ac \\ d = 4  +  60 \\ d = 64 \\  x =  \frac{ - b +  \sqrt{d} }{2a}  \\ x =  \frac{ - 2 + 8}{2 \times  \sqrt{5} } \\ x =  \frac{3}{ \sqrt{5} }  \\ x =  \frac{3 \sqrt{5} }{5}  -  -  -  - 1st \: root \\ x =  \frac{ - 2  -  8}{ \sqrt{5} }  \\ x =   \frac{ - 10}{2 \sqrt{5} } \\ x =  -\sqrt{5}    -  -  -  -  - 2nd \: root

\huge{\boxed{\sf{x=-\sqrt{5}\:and\frac{3}{\sqrt{5}}}}}

Similar questions