Math, asked by golu678, 11 months ago

roots of the equation 3x^2-2x+3 are

Answers

Answered by suchindraraut17
0

Answer:

\frac{2+2\sqrt{2i} }{3} , \frac{2-2\sqrt{2i} }{3}

Step-by-step explanation:

We have to find the roots of the given equation 3x^2-2x+3

∵ The given equation is quadratic , so there will be two values of  x.

The given equation is 3x^{2} - 2 \times x  + 3

Now applying Sreedharacharyas rule to find the roots;

D =  b^{2}  - 4 \times a \times c

D = 4- 4 \times3 \times3\\

D = -32

So there will be two values of x

x= \frac{-b + \sqrt{D} }{2 \times a}  and  x= \frac{-b - \sqrt{D} }{2 \times a}

x = \frac{ 4 + \sqrt{-32} }{6} and x = \frac{ 4 - \sqrt{-32} }{6}

∴   x = \frac{ 2 + 2\sqrt{2i} }{3} and   x = \frac{ 2 - 2\sqrt{2i} }{3}

Similar questions