Math, asked by pratik1015, 11 months ago

roots of the equation (a+b-c)x²-2ax+(a-b+c)=0 , (a,b,c belongs to= Q)​

Answers

Answered by dipendrakandel
5

Step-by-step explanation:

3qx²)2qx+(3q)=0

then use law of equation in algebraic equations .then

ans=

Answered by bedabrata85
6

SOLUTION

It is clear that the given equation is a quadratic equation

Given expression,

(a + b - c) {x}^{2}  - 2ax + (a  - b  +  c) = 0

In this given expression,

a , b and c are Real and rational parts

Therefore, a, b and c are constants

Thus,

This expression is of the form,

a {x}^{2}    +  bx + c = 0

Where, a=(a+b-c)

b=-2a

c=(a-b+c)

Let us factorize the given expression using Completing square method,

 \frac{ {ax}^{2} }{a}  +  \frac{bx}{a}  +  \frac{c}{a}  =  \frac{0}{a}  \\  =  >  {x}^{2}  +  \frac{b}{a} x  =  -  \frac{c}{a}  \\  =  >  {x}^{2}  + 2 \times  \frac{b}{2a}  \times x +  (\frac{b}{2a})^{2}  =  {( \frac{b}{2a}) }^{2}  -  \frac{c}{a}  \\  =  >  {(x +  \frac{b}{2a}) }^{2}  =  \frac{ {b}^{2} }{4 {a}^{2} }  -  \frac{c}{a}  \\  =  >  {(x +  \frac{b}{2a} )}^{2}  =  \frac{ {b}^{2}  - 4ac}{4 {a}^{2} }  \\  =  > x +  \frac{b}{2a}  =   \frac{  \frac{ + }{ } \sqrt{ {b}^{2}  - 4ac} }{2a}  \\  =  > x =  \frac{ - b +  \sqrt{ {b}^{2}  - 4ac} }{2a}  \: or \: x =  \frac{ - b -  \sqrt{ {b}^{2}  - 4ac} }{2a}

Now , Just Substitute the values of a, b and c in the value of x

Hence, We get the required roots of the given expression as

 \frac{ - ( - 2a) +  \sqrt{ {( - 2a)}^{2} - 4(a + b - c)(a - b + c) } }{2a}   \: and \:  \frac{ - ( - 2a) -  \sqrt{( { - 2a)}^{2}  - 4(a + b - c)(a - b + c)} }{2a}  \\   \frac{ 2a + 2 \sqrt{{</strong><strong>(</strong><strong>{b} -  {c}</strong><strong>)</strong><strong>^{2}  }} }{2a}  \: and \:  \frac{2a - 2 \sqrt{ </strong><strong>(</strong><strong>{b}  -  {c}</strong><strong>)</strong><strong>^{2} } }{2a}  \\  </strong><strong>\</strong><strong>frac</strong><strong>{ { </strong><strong>a</strong><strong>+</strong><strong>{b}-  {c}  } }{a}  \: and \:  \frac{ {</strong><strong>a-</strong><strong> {b} </strong><strong>+</strong><strong>{c}  } }{a}

Here is your answer

HOPE IT HELPS YOU

AND

HAPPY INDEPENDENCE DAY...

Similar questions