Roots of x3 + ax2 + bx + c = 0 are
cosines of angles of an acute triangle, then
the value of a 2b – 2c is
2
Answers
Question :- Roots of x³ + ax² + bx + c = 0 are cosines of angles of an acute triangle, then the value of a² - 2b - 2c is ?
Solution :-
We know that, the cubic polynomial P(x) =ax³ + bx² + cx + d = 0 ,a ≠ 0. If α, β and γ are zeros of P(x),
Then :-
- α + β + γ = (-b)/a
- αβ + βγ + αγ = c/a
- αβγ = (-d)/a
Comparing the given polynomial x³ + ax² + bx + c = 0 with ax³ + bx² + cx + d = 0 , we get,
- a = 1
- b = a
- c = b
- d = c
Than,
Also, roots of given Polynomial are cosA , cosB and cosC .
Therefore,
- cosA + cosB + cosC = (-b)/a = (-a)/1 = (-a) .
- cosA*cosB + cosB*cosC + cosA*cosC = c/a = b/1 = b.
- cosA * cosB * cosC = (-d)/a = (-c)/1 = (-c) .
Putting all these value now, we get,
→ a² - 2b - 2c
→ (cosA + cosB + cosC)² - 2(cosA*cosB + cosB*cosC + cosA*cosC) - 2{(-1) * cosA * cosB * cosC }
using (a + b + c)² = a² + b² + c² + 2(ab + bc + ac) , we get,
→ {cos²A + cos²B + cos²C + 2(cosA*cosB + cosB*cosC + cosA*cosC)} - 2(cosA*cosB + cosB*cosC + cosA*cosC) + 2(cosA * cosB * cosC)
→ cos²A + cos²B + cos²C + 2(cosA * cosB * cosC)
_______
Now, Lets Try to Solve second Part :-
→ 2(cosA * cosB * cosC)
→ (2 * cosA * cosB) * cosC
using 2*cosC*cosD = cos(C + D) + cos(C - D) , we get,
→ {cos(A + B) + cos(A - B)} * cosC
By angle sum Property of ∆,
- A + B + C = π
- (A + B) = (π - C)
Putting, we get,
→ { cos(π - C) + cos(A - B) } * cosC
→ cos(π - C)*cosC + cos(A - B)*cosC
using cos(π - A) = - (cosA) now,
→ -(cosC) * cosC + cos(A - B)*cos{π - (A + B)}
→ - cos²C + cos(A - B) * (-1)cos(A + B)
→ - cos²C - cos(A - B) * cos(A + B)
using cos(A - B) * cos(A + B) = cos²A - sin²B , we get,
→ - cos²C - [cos²A - sin²B ]
→ - cos²C - cos²A + sin²B
using sin²B = (1 - cos²B) finally, we get,
→ - cos²C - cos²A + (1 - cos²B)
→ [ 1 - cos²C - cos²A - cos²B ]
________
Putting this value of second part , we get,
→ cos²A + cos²B + cos²C + 2(cosA * cosB * cosC)
→ cos²A + cos²B + cos²C + [ 1 - cos²C - cos²A - cos²B ]
→ 1 + cos²A - cos²A + cos²B - cos²B + cos²C - cos²C
→ 1 (Ans.)
________________________
Learn More :-
Similar Questions :-
prove that cosA-sinA+1/cos A+sinA-1=cosecA+cotA
https://brainly.in/question/15100532
help me with this trig.
https://brainly.in/question/18213053