Math, asked by Sonal7360, 10 months ago

Rs. 1200 is lent out at 5% per annum simple interest for 3 years. Find the amount after 3 years.

Answers

Answered by BrainlyConqueror0901
23

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Simple\:Interest=180\:rupees}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given:}} \\  \tt: \implies Principal(p) = 1200 \: rupees \\  \\ \tt: \implies Rate\%(r) = 5\% \\  \\ \tt: \implies Time(t) = 3 \: years \\  \\ \red{\underline \bold{To \: Find:}} \\  \tt:  \implies Simple \: Interest(S.I)= ?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies S.I =  \frac{p \times r \times t}{100}  \\  \\ \tt:  \implies S.I=  \frac{1200 \times 5 \times 3}{100}  \\  \\ \tt:  \implies S.I= 12 \times 5 \times 3 \\  \\  \green{\tt:  \implies S.I= 180 \: rupees}  \\  \\  \bold{for \: amount : } \\ \tt:  \implies  A= p + S.I\\  \\ \tt:  \implies  A= 1200 + 180 \\  \\  \green{\tt:  \implies A= 1380 \: rupees}  \\  \\  \blue{ \bold{Some \: related \: formula}} \\  \orange{\tt \circ \: A = p(1 +  \frac{r}{100})^{t}}  \\  \\ \orange{\tt \circ \: A = p(1 +  \frac{ \frac{r}{2} }{100})^{2t}} \\  \\ \orange{\tt \circ \: A = p(1 +  \frac{ \frac{r}{4} }{100})^{4t}}

Answered by Saby123
22

......

 \tt{\huge{\purple{ .......... }}}

QUESTION :

Rs. 1200 is lent out at 5% per annum simple interest for 3 years. Find the amount after 3 years...

SOLUTION :

From the above Question, we can gather the following information.....

Rs. 1200 is lent out at 5% per annum simple interest for 3 years.

SI = 1200 × 5 × 3 / 200 = Rs. 180

Amount = Principle + SI = Rs. 1380.

Similar questions