Math, asked by nigaranjum18, 3 months ago

Rs 4800 become 7500 at a certain rate of interest compounded annually in 2 years 8 months. then in how many years rs 19200 will amounts to 37500 at the same rate of interest compounded annually?​

Answers

Answered by mddilshad11ab
157

\sf\small\underline\green{Given:-}

\sf{\implies Condition\:_{(as\:per\: first)}}

\sf{\implies P=Rs.4800\:\:A=Rs.7500}

\sf{\implies T= 2\: years\:and\: 8\: months}

\sf\small\underline\green{To\: Find:-}

\sf{\implies Time\:_{(as\:per\:2nd\: condition)}=?}

\sf\small\underline\green{Solution:-}

  • To calculate time here by applying formula and setting up equation as per given condition:-]

\sf\small\underline\green{Formula\: Used:-}

\tt\red{\implies A=P\bigg[1+\dfrac{r}{100}\bigg]^n\bigg[1+\dfrac{r}{100}\bigg]^F}

  • Here P=4800 A=7500 N=2 F=2/3

\tt{\implies 7500=4800\bigg[1+\dfrac{r}{100}\bigg]^2\bigg[1+\dfrac{r}{100}\bigg]^\frac{2}{3}}

\tt{\implies \dfrac{7500}{4800}=\bigg[1+\dfrac{r}{100}\bigg]^2\bigg[1+\dfrac{r}{100}\bigg]^\frac{2}{3}}

\tt{\implies \dfrac{7500}{4800}=\bigg[1+\dfrac{r}{100}\bigg]^{2+\frac{2}{3}}}

\tt{\implies \dfrac{75}{48}=\bigg[1+\dfrac{r}{100}\bigg]^\frac{6+2}{3}}

\tt{\implies \dfrac{75}{48}=\bigg[1+\dfrac{r}{100}\bigg]^\frac{8}{3}}

\tt{\implies \bigg[\dfrac{5}{4}\bigg]^2=\bigg[1+\dfrac{r}{100}\bigg]^\frac{8}{3}}

\tt{\implies \bigg[\dfrac{5}{4}\bigg]^{2\times\frac{3}{8}}=\bigg[1+\dfrac{r}{100}\bigg]}

\tt{\implies \bigg[\dfrac{5}{4}\bigg]^\frac{3}{4}=\bigg[1+\dfrac{r}{100}\bigg]-----(i)}

\sf{\implies Condition\:_{(as\:per\:2nd)}}

  • Here P=19200 A=37500 n=?

\tt{\implies A=P\bigg[1+\dfrac{r}{100}\bigg]^n}

\tt{\implies 37500=19200\bigg[1+\dfrac{r}{100}\bigg]^n}

\tt{\implies \dfrac{375}{192}=\bigg[1+\dfrac{r}{100}\bigg]^n}

\tt{\implies \dfrac{5^3}{4^3}=\bigg[1+\dfrac{r}{100}\bigg]^n}

\tt{\implies \bigg[\dfrac{5}{4}\bigg]^\frac{3}{n}=\bigg[1+\dfrac{r}{100}\bigg]-----(ii)}

  • Putting the value eq (i) in (ii) here :-]

\tt{\implies \bigg[\dfrac{5}{4}\bigg]^\frac{3}{4}=\bigg[1+\dfrac{r}{100}\bigg]}

\tt{\implies \bigg[\dfrac{5}{4}\bigg]^\frac{3}{4}=\bigg[\dfrac{5}{4}\bigg]^\frac{3}{n}}

\tt{\implies \dfrac{3}{4}=\dfrac{3}{n}}

\tt{\implies n=4}

\sf\large{Hence,}

\sf{\implies Time\:_{(as\:per\:2nd\: condition)}=4\: years}

Answered by Anonymous
89

Answer:

Given :-

  • Rs 4800 become Rs 7500 at a certain rate of interest compound annually in 2 years 8 months.
  • Rs 19200 will amount to Rs 37500 at the same rate of interest compound annually.

To Find :-

  • How many years Rs 19200 will amounts to Rs 37500 at the same rate of interest compounded annually.

Formula Used :-

\longmapsto \sf\boxed{\bold{\pink{Amount =\: P\bigg(1 + \dfrac{r}{100}\bigg)^{n} \bigg(1 + \dfrac{r}{100}\bigg)^{F}}}}\\

where,

  • P = Principal
  • r = Rate of Interest
  • n = Time
  • F = Fraction Time

Solution :-

{\small{\bold{\purple{\underline{\bigstar\: In\: the\: {1}^{{st}}\: case\: :-}}}}}

\mapsto Rs 4800 become Rs 7500 at a certain rate of interest compound annually in 2 years 8 months.

Given :

  • Time = 2 years 8 months

Then,

\implies \sf Time =\: 2\: years + 8\: months

  • 2 years = 12 + 12 = 24

\implies \sf Time =\: 24\: months + 8\: months \\

\implies \sf\bold{\green{Time =\: 32\: months}}

Again, convert it into years we get,

\implies \sf \dfrac{\cancel{32}}{\cancel{12}}

\implies\sf\dfrac{\cancel{16}}{\cancel{6}}

\implies \sf\dfrac{\cancel{8}}{\cancel{3}}

\implies \sf\bold{\green{2\dfrac{2}{3}}}

Now, we can say that :

  • Time (n) = 2
  • Fraction Time (F) = ⅔

According to the question by using the formula we get,

Given :

  • Principal = Rs 4800
  • Amount = Rs 7500
  • Time = 2
  • Fraction Time = ⅔

Then,

\leadsto\sf 7500 =\: 4800\bigg(1 + \dfrac{r}{100}\bigg)^{2} \bigg(1 + \dfrac{r}{100}\bigg)^{\frac{2}{3}}\\

\leadsto \sf \dfrac{75\cancel{00}}{48\cancel{00}} =\: \bigg(1 + \dfrac{r}{100}\bigg)^{2 + \frac{2}{3}}\\

\leadsto \sf \dfrac{75}{48} =\: \bigg(1 + \dfrac{r}{100}\bigg)^{\frac{8}{3}}\\

\leadsto \sf {\bigg(\dfrac{5}{4}\bigg)}^{2} =\: \bigg(1 + \dfrac{r}{100}\bigg)^{\frac{8}{3}}\\

\leadsto \sf \bigg(\dfrac{5}{4}\bigg)^{\cancel{2} \times \frac{3}{\cancel{8}}} =\: \bigg(1 + \dfrac{r}{100}\bigg)\\

\leadsto \sf \bold{\green{\bigg(\dfrac{5}{4}\bigg)^{\frac{3}{4}} =\: \bigg(1 + \dfrac{r}{100}\bigg)\: ----\: (Equation\: No\: 1)}}\\

{\small{\bold{\purple{\underline{\bigstar\: In\: the\: {2}^{{nd}}\: case\: }}}}}

\mapsto Rs 19200 will amounts to Rs 37500 at the same rate of interest compound annually.

Given :

  • Principal = Rs 19200
  • Amount = Rs 37500

As we know that,

\longmapsto \sf\boxed{\bold{\pink{A =\: P\bigg(1 + \dfrac{r}{100}\bigg)^{n}}}}

Then,

\leadsto \sf 37500 =\: 19200\bigg(1 + \dfrac{r}{100}\bigg)^{n}\\

\leadsto \sf \dfrac{374\cancel{00}}{192\cancel{00}} =\: \bigg(1 + \dfrac{r}{100}\bigg)^{n}\\

\leadsto \sf \bigg(\dfrac{375}{192}\bigg) =\: \bigg(1 + \dfrac{r}{100}\bigg)^{n}\\

\leadsto \sf {\bigg(\dfrac{5}{4}\bigg)}^{3} =\: \bigg(1 + \dfrac{r}{100}\bigg)^{n}\\

\leadsto\sf\green{\bold{{\bigg(\dfrac{5}{4}\bigg)}^{\frac{3}{n}} =\: \bigg(1 + \dfrac{r}{100}\bigg)\: ----\: (Equation\: No\: 2)}}\\

Now, by putting the equation no 1 in the equation no 2 we get,

\leadsto \sf \bigg(\dfrac{5}{4}\bigg)^{\frac{3}{4}} =\: \bigg(\dfrac{5}{4}\bigg)^{\frac{3}{n}}\\

\leadsto \sf {\cancel{\bigg(\dfrac{5}{4}\bigg)}}^{\frac{3}{n}} =\: {\cancel{\bigg(\dfrac{5}{4}\bigg)}}^{\frac{3}{4}}\\

\leadsto \sf \dfrac{3}{n} =\: \dfrac{3}{4}

\leadsto \sf\bold{\red{n =\: 4\: years}}

\therefore The time is 4 years.

Similar questions