Math, asked by Rajarshishukla, 10 months ago

Runge kutta method
X=0.1
dy/dx=x+y,x(0)=1

Answers

Answered by rajdheerajcreddy
4

Answer:

(x,y) = (0.1,0.9)

Step-by-step explanation:

\frac{dy}{dx} =x+y\\\frac{dy}{dx} -y =x\\     Comparing this with \frac{dy}{dx} +P y =  Q(x)

Here, P = -1   and Q(x) =x

Finding integral factor, I.F =e^{\int Pdx}

                                           = e^{\int (-1)dx}

                                      I.F = e^{-x}

Now, the solution of the differential equation is      

                                       y(I.F) =\int {(I.F)Q(x)} \, dx +c   [ c is integral constant]

    So,                              y(e^{-x}) = \int{(e^{-1})(x) } , dx  +c

                                       \frac{y}{e^{x} }= (-x e^{-x}+e^{-x} ) +c

                                      y = (1-x)+ce^{x}

And    (x,y) =(1,0)  

So,    0= (1-1) +ce^{1}

        c = 0.

Now,   y =  1 - x

Therefore,  for x = 0.1,  y = 1-0.1= 0.9

Similar questions